三级串联式BCO反应器比耗氧速率及菌群结构分析

於蒙, 潘婷, 黄棚兰, 姜友法, 王宝林, 庞晶津, 夏鸣飞. 三级串联式BCO反应器比耗氧速率及菌群结构分析[J]. 环境工程学报, 2019, 13(6): 1350-1358. doi: 10.12030/j.cjee.201810162
引用本文: 於蒙, 潘婷, 黄棚兰, 姜友法, 王宝林, 庞晶津, 夏鸣飞. 三级串联式BCO反应器比耗氧速率及菌群结构分析[J]. 环境工程学报, 2019, 13(6): 1350-1358. doi: 10.12030/j.cjee.201810162
YU Meng, PAN Ting, HUANG Penglan, JIANG Youfa, WANG Baolin, PANG Jingjin, XIA Mingfei. Analysis of specific oxygen consumption rate and microbial structure in a three-stage biological contact oxidation reactor[J]. Chinese Journal of Environmental Engineering, 2019, 13(6): 1350-1358. doi: 10.12030/j.cjee.201810162
Citation: YU Meng, PAN Ting, HUANG Penglan, JIANG Youfa, WANG Baolin, PANG Jingjin, XIA Mingfei. Analysis of specific oxygen consumption rate and microbial structure in a three-stage biological contact oxidation reactor[J]. Chinese Journal of Environmental Engineering, 2019, 13(6): 1350-1358. doi: 10.12030/j.cjee.201810162

三级串联式BCO反应器比耗氧速率及菌群结构分析

  • 基金项目:

    国家自然科学基金青年基金资助项目51808482

    江苏省自然科学基金资助项目BK20170506

    国家博士后科学基金面上资助项目2018M632392国家自然科学基金青年基金资助项目(51808482)

    江苏省自然科学基金资助项目(BK20170506)

    江苏省大学生创新创业训练计划项目

    国家博士后科学基金面上资助项目(2018M632392)

Analysis of specific oxygen consumption rate and microbial structure in a three-stage biological contact oxidation reactor

  • Fund Project:
  • 摘要: 以厌氧/缺氧/好氧和生物接触氧化反应器(AAO-BCO)组成的双污泥系统为研究对象,研究了三级串联式生物接触氧化反应器(N1、N2、N3)中有机物浓度对比耗氧速率(SOUR)的影响,同时对比了各级处理单元的硝化特性。实验结果表明,N1、N2、N3分别在有机物浓度低于40、60和40 mg·L-1时,比耗氧速率随有机物浓度的升高而升高。根据比耗氧速率粗略估计了氨氧化细菌和亚硝酸盐氧化菌在各级中的百分比,其中氨氧化细菌的百分比分别为43.47%、54.94%和63.83%,而亚硝酸盐氧化菌的百分比分别为11.65%、21.87%和18.23%。由比耗氧速率计算得到氨氮比氧化速率和亚硝酸盐氮比氧化速率,其最高值分别为实际污水处理厂的1.9倍和1.2倍,生物接触氧化反应器中氨氧化细菌、亚硝酸盐氧化菌菌群更密集,硝化性能更优,且存在明显的亚硝酸盐累积现象(亚硝酸盐浓度为1.52~3.65 mg·L-1,亚硝态氮积累率最高可达25%)。
  • 加载中
  • [1] MA Y, PENG Y, WANG S, et al. Achieving nitrogen removal via nitrite in a pilot-scale continuous pre-denitrification plant[J]. Water Research, 2009, 43(3): 563-572.
    [2] RUIZ G, JEISON D, CHAMY R. Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration[J]. Water Research, 2003, 37(6): 1371-1377.
    [3] 王淑莹, 李论, 李凌云, 等. 快速启动短程硝化过程起始pH值对亚硝酸盐积累的影响[J]. 北京工业大学学报, 2011, 37(7): 1067-1072.
    [4] DUR? N U, DEL V R O A, CAMPOS J L, et al. Enhanced ammonia removal at room temperature by pH controlled partial nitrification and subsequent anaerobic ammonium oxidation[J]. Environmental Technology, 2014, 35(4): 383-390.
    [5] HEAD M A, OLESZKIEWICZ J A. Bioaugmentation for nitrification at cold temperatures[J]. Water Research, 2004, 38(3):523-530.
    [6] DAIMS H, BRUHL A, AMANN R, et al. The domain-specific probe EUB338 is insufficient for the detection of all bacteria: Development and evaluation of a more comprehensive probese [J]. Systematic & Applied Microbiology, 1999, 22(3): 434-444.
    [7] YAN J, HU Y Y. Partial nitrification to nitrite for treating ammonium-rich organic wastewater by immobilized biomass system[J]. Bioresource Technology, 2009, 100(8): 2341-2347.
    [8] 陆洪省, 王厚伟. 活性污泥中高效硝化细菌的分离与初步鉴定[J]. 安全与环境工程, 2013, 20(1): 60-62.
    [9] 王小菊, 何春平, 王震, 等. 高效硝化细菌的筛选及特性研究[J]. 中国环境科学, 2013, 33(2): 286-292.
    [10] 郑敏, 杨波, 汪诚文, 等. 中试MBBR装置强化氨氮去除速率的影响条件研究[J]. 中国环境科学, 2012, 32(10): 1778-1783.
    [11] 彭永臻, 王建华, 陈永志. A2O-BAF联合工艺处理低碳氮比生活污水[J]. 北京工业大学学报, 2012, 38(4): 590-595.
    [12] 张淼, 彭永臻, 王聪, 等. 容积分配比对A2/O-生物接触氧化工艺反硝化除磷特性的影响[J]. 东南大学学报(自然科学版), 2015, 45(3): 531-538.
    [13] 苗志加, 薛桂松, 翁冬晨, 等. 亚硝酸盐对聚磷菌反硝化除磷代谢及N2O产生的影响[J]. 化工学报, 2013, 64(6): 2201-2207.
    [14] LEYVA-DIAZ J C, CALDERON K, RODRIGUEZ F A, et al. Comparative kinetic study between moving bed biofilm reactor-membrane bioreactor and membrane bioreactor systems and their influence on organic matter and nutrients removal[J]. Biochemical Engineering Journal, 2013, 77(6): 28-40.
    [15] 许秀红, 李秀, 李绍峰, 等. 强化生物除磷系统中聚磷菌和聚糖菌的竞争研究进展[J]. 化学工程师, 2017, 31(1): 44-48.
    [16] SCAGLIA B, ERRIQUENS F G, GIGLIOTTI G, et al. Precision determination for the specific oxygen uptake rate (SOUR) method used for biological stability evaluation of compost and biostabilized products[J]. Bioresource Technology, 2007, 98(3):706-713.
    [17] 孙晓莹, 张轶凡, 聂英进, 等. 活性污泥比耗氧速率的测定及其在污水处理厂的应用[J]. 天津建设科技, 2009, 19(6):56-59.
    [18] 李帅, 徐金有, 林仙键, 等. 短程硝化反硝化影响因素研究进展[J]. 广州化工, 2014, 42(24): 24-26.
    [19] 彭永臻, 杨岸明, 李凌云, 等. 短程硝化最优曝气时间控制与硝化种群调控[J]. 哈尔滨工业大学学报, 2013, 45(2):101-105.
    [20] 盛韩微. 反硝化生物滤池亚硝酸盐积累特性的研究[D]. 北京: 北京工业大学, 2015.
    [21] 曾薇, 张悦, 李磊, 等. 生活污水常温处理系统中AOB与NOB竞争优势的调控[J]. 环境科学, 2009, 30(5): 1430-1436.
    [22] GUO J, PENG Y, WANG S, et al. Long-term effect of dissolved oxygen on partial nitrification performance and microbial community structure[J].Bioresource Technology, 2009, 100(11): 2796-2802.
    [23] 王晓慧. 城市污水处理厂中氨氧化菌及细菌群落结构与功能研究[D]. 北京: 清华大学, 2010.
    [24] 李延, 解迪, 梁文艳, 等. SBBR反应器运行中生物膜胞外聚合物的变化特征[J]. 环境科学与技术, 2016, 39(4): 95-101.
    [25] 文扬, 龙海涛, 王洪臣, 等. 耗氧速率在线测定装置的应用[J]. 环境工程学报, 2017, 11(4): 2621-2626.
    [26] 王磊. 废水生物除磷过程的OUR响应特征[D]. 重庆: 重庆大学, 2013.
    [27] 张婧倩, 彭永臻, 唐旭光, 等. COD对强化生物除磷系统的影响及OUR的变化规律[J]. 环境工程学报, 2011, 5(2):301-305.
    [28] 张淼, 彭永臻, 王聪, 等. 三段式硝化型生物接触氧化反应器的启动及特性[J]. 中国环境科学, 2015, 35(1): 101-109.
    [29] 赵诗惠, 吕亮, 蒋志云, 等. ABR-MBR组合工艺短程硝化过程的微生物种群[J]. 中国环境科学, 2018, 38(2): 566-573.
  • 加载中
计量
  • 文章访问数:  3370
  • HTML全文浏览数:  3304
  • PDF下载数:  90
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-06-18

三级串联式BCO反应器比耗氧速率及菌群结构分析

  • 1. 扬州大学环境科学与工程学院,扬州 225127
  • 2. 扬州市洁源排水有限公司,扬州 225002
  • 3. 江苏扬农化工股份有限公司,扬州 225009
基金项目:

国家自然科学基金青年基金资助项目51808482

江苏省自然科学基金资助项目BK20170506

国家博士后科学基金面上资助项目2018M632392国家自然科学基金青年基金资助项目(51808482)

江苏省自然科学基金资助项目(BK20170506)

江苏省大学生创新创业训练计划项目

国家博士后科学基金面上资助项目(2018M632392)

摘要: 以厌氧/缺氧/好氧和生物接触氧化反应器(AAO-BCO)组成的双污泥系统为研究对象,研究了三级串联式生物接触氧化反应器(N1、N2、N3)中有机物浓度对比耗氧速率(SOUR)的影响,同时对比了各级处理单元的硝化特性。实验结果表明,N1、N2、N3分别在有机物浓度低于40、60和40 mg·L-1时,比耗氧速率随有机物浓度的升高而升高。根据比耗氧速率粗略估计了氨氧化细菌和亚硝酸盐氧化菌在各级中的百分比,其中氨氧化细菌的百分比分别为43.47%、54.94%和63.83%,而亚硝酸盐氧化菌的百分比分别为11.65%、21.87%和18.23%。由比耗氧速率计算得到氨氮比氧化速率和亚硝酸盐氮比氧化速率,其最高值分别为实际污水处理厂的1.9倍和1.2倍,生物接触氧化反应器中氨氧化细菌、亚硝酸盐氧化菌菌群更密集,硝化性能更优,且存在明显的亚硝酸盐累积现象(亚硝酸盐浓度为1.52~3.65 mg·L-1,亚硝态氮积累率最高可达25%)。

English Abstract

参考文献 (29)

目录

/

返回文章
返回