氨基修饰介孔分子筛SBA-15对水中Pb2+吸附性能

魏建文, 韦真周, 廖雷, 赵淞盛, 王敦球. 氨基修饰介孔分子筛SBA-15对水中Pb2+吸附性能[J]. 环境工程学报, 2014, 8(5): 1825-1830.
引用本文: 魏建文, 韦真周, 廖雷, 赵淞盛, 王敦球. 氨基修饰介孔分子筛SBA-15对水中Pb2+吸附性能[J]. 环境工程学报, 2014, 8(5): 1825-1830.
Wei Jianwen, Wei Zhenzhou, Liao Lei, Zhao Songsheng, Wang Dunqiu. Aqueous Pb(Ⅱ) removal by adsorption on amine-functionalized mesoporous silica SBA-15[J]. Chinese Journal of Environmental Engineering, 2014, 8(5): 1825-1830.
Citation: Wei Jianwen, Wei Zhenzhou, Liao Lei, Zhao Songsheng, Wang Dunqiu. Aqueous Pb(Ⅱ) removal by adsorption on amine-functionalized mesoporous silica SBA-15[J]. Chinese Journal of Environmental Engineering, 2014, 8(5): 1825-1830.

氨基修饰介孔分子筛SBA-15对水中Pb2+吸附性能

  • 基金项目:

    国家自然科学基金资助项目(41161075)

    广西科技厅科技攻关项目(桂科攻1140002-1-2)

  • 中图分类号: X703

Aqueous Pb(Ⅱ) removal by adsorption on amine-functionalized mesoporous silica SBA-15

  • Fund Project:
  • 摘要: 以二乙烯三胺基丙基三甲氧基硅烷为偶联剂,利用后修饰方法,制备出氨基修饰SBA-15。利用傅立叶红外光谱仪,N2-吸附脱附对样品结构进行表征,并讨论了吸附动力学特性及吸附等温特性。结果表明,修饰后的SBA-15吸附水中Pb2+时在120 min内可以达到吸附平衡,吸附过程符合拟二阶动力学方程。Langmuir模型及Dubinin-Radushkevich (D-R)模型很好地描述了Pb2+在修饰后SBA-15上的吸附行为,其中基于Langmuir模型计算得出的25℃时最大吸附量为84.25 mg/g。D-R模型计算得出的平均吸附自由能在25℃、35℃和45℃时分别为-13.9、-14.4和-16.0 kJ/mol,表明吸附可能属于表面络合作用,可以归为化学过程。
  • 加载中
  • [1] 张正洁, 李东红, 许增贵.我国铅污染现状、原因及对策.环境保护科学, 2005, (4):41-47 Zhang Zhengjie, Li Donghong, Xu Zenggui.Present conditions, reasons and measures of lead pollution in China.Environmental Protection Science, 2005, (4): 41-47(in Chinese)
    [2] 陈敏, 甘一如.重金属的生物吸附.化学工业与工程, 1999, 7(1):21-27 Chen Min, Gan Yiru.Biosorption of heavy metals.Chemical industry and Engineering, 1999, 7(1): 21-27(in Chinese)
    [3] Sheng G. D., Wang S. W., Hu J., et al. Adsorption of Pb(Ⅱ) on diatomite as affected via aqueous solution chemistry and temperature. Colloids Surf. A, 2009, 339(1-3): 159-166
    [4] Beck J. S., Vartuli J. C., Roth W. J., et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc., 1992, 114(27): 10834-10843
    [5] Bagshaw S. A., Prouzet E., Pinnavaia T. J. Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science (New York, NY), 1995, 269(5228): 1242
    [6] Zhao D., Feng J., Huo Q., et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350): 548-552
    [7] Zhao D., Huo Q., Feng J., et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc., 1998, 120(24): 6024-6036
    [8] Lombardo M. V., Videla M., Calvo A., et al. Aminopropyl-modified mesoporous silica SBA-15 as recovery agents of Cu(Ⅱ)-sulfate solutions: Adsorption efficiency, functional stability and reusability aspects. J. Hazard. Mater., 2012, 223: 53-62
    [9] Yang L. M., Wang Y. J., Luo G. S., et al. Functionalization of SBA-15 mesoporous silica with thiol or sulfonic acid groups under the crystallization conditions. Micropor. Mesopor. Mater., 2005, 84(1-3): 275-282
    [10] Wei Q., Chen H. Q., Nie Z. R., et al. Preparation and characterization of vinyl-functionalized mesoporous SBA-15 silica by a direct synthesis method. Mater. Lett., 2007, 61(7): 1469-1473
    [11] Bruzzoniti M. C., Prelle A., Sarzanini C., et al. Retention of heavy metal ions on SBA-15 mesoporous silica functionalised with carboxylic groups. J. Sep. Sci., 2007, 30(15): 2414-2420
    [12] Mureseanu M., Reiss A., Stefanescu I., et al. Modified SBA-15 mesoporous silica for heavy metal ions remediation. Chemosphere, 2008, 73(9): 1499-1504
    [13] Aguado J., Arsuaga J. M., Arencibia A., et al. Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica. J. Hazard. Mater., 2009, 163(1): 213-221
    [14] Jiang Y. J., Gao Q. M., Yu H. G., et al. Intensively competitive adsorption for heavy metal ions by PAMAM-SBA-15 and EDTA-PAMAM-SBA-15 inorganic-organic hybrid materials. Micropor. Mesopor. Mater., 2007, 103(1-3): 316-324
    [15] Hajiaghababaei L., Badiei A., Ganjali M. R., et al. Highly efficient removal and preconcentration of lead and cadmium cations from water and wastewater samples using ethylenediamine functionalized SBA-15. Desalination, 2011, 266(1-3): 182-187
    [16] Zdravkov B. D., Cermak J. J., Sefara M., et al. Pore classification in the characterization of porous materials: A perspective. Cent. Eur. J. Chem., 2007, 5(2): 385-395
    [17] Ngah W. S., Hanafiah M. A. Adsorption of copper on rubber (Hevea brasiliensis) leaf powder: Kinetic, equilibrium and thermodynamic studies. Biochem. Eng. J., 2008, 39(3): 521-530
    [18] Chen H., Dai G. L., Zhao J., et al. Removal of copper(Ⅱ) ions by a biosorbent-Cinnamomum camphora leaves powder. J. Hazard. Mater., 2010, 177(1-3): 228-236
    [19] Namasivayam C., Ranganathan K. Waste Fe (Ⅲ)/Cr (Ⅲ) hydroxide as adsorbent for the removal of Cr(Ⅵ) from aqueous solution and chromium plating industry wastewater. Environ. Pollut., 1993, 82(3): 255-261
    [20] Rieman W., Walton H. Ion exchange in analytical chemistry. International Series of Monographs in Analytical Chemistry, Vol. 38. In Pergamon Press, Oxford, 1970
    [21] Li J. S., Miao X. Y., Hao Y. X., et al. Synthesis, amino-functionalization of mesoporous silica and its adsorption of Cr(Ⅵ). J. Colloid Interf. Sci., 2008, 318(2): 309-314
  • 加载中
计量
  • 文章访问数:  1293
  • HTML全文浏览数:  548
  • PDF下载数:  927
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-02-20
  • 刊出日期:  2014-05-06

氨基修饰介孔分子筛SBA-15对水中Pb2+吸附性能

  • 1. 桂林理工大学环境科学与工程学院, 广西矿冶与环境科学实验中心, 桂林 541004
基金项目:

国家自然科学基金资助项目(41161075)

广西科技厅科技攻关项目(桂科攻1140002-1-2)

摘要: 以二乙烯三胺基丙基三甲氧基硅烷为偶联剂,利用后修饰方法,制备出氨基修饰SBA-15。利用傅立叶红外光谱仪,N2-吸附脱附对样品结构进行表征,并讨论了吸附动力学特性及吸附等温特性。结果表明,修饰后的SBA-15吸附水中Pb2+时在120 min内可以达到吸附平衡,吸附过程符合拟二阶动力学方程。Langmuir模型及Dubinin-Radushkevich (D-R)模型很好地描述了Pb2+在修饰后SBA-15上的吸附行为,其中基于Langmuir模型计算得出的25℃时最大吸附量为84.25 mg/g。D-R模型计算得出的平均吸附自由能在25℃、35℃和45℃时分别为-13.9、-14.4和-16.0 kJ/mol,表明吸附可能属于表面络合作用,可以归为化学过程。

English Abstract

参考文献 (21)

目录

/

返回文章
返回