[1] LIU R H, XU W Q, LI T, et al.Role of NO in Hg0 oxidation over a commercial selective catalytic reduction catalyst V2O5-WO3/TiO2[J].Environental Sciences,2015,38:126-132 10.1016/j.jes.2015.04.023
[2] ZHANG M Z, WANG P, DONG Y, et al.Study of elemental mercury oxidation over an SCR catalyst with calcium chloride addition[J].Chemical Engineering Journal,2014,253:243-250 10.1016/j.cej.2014.05.066
[3] SENIOR C L, HELBLE J J, SAROFIM A F.Emissions of mercury, trace elements, and fine particles from stationary combustion sources[J].Fuel Processing Technology,2000,65:263-288 10.1016/S0378-3820(00)00082-5
[4] ZHUANG Y, ZYGARLICKE C J, GALBREATH K C, et al.Kinetic transformation of mercury in coal combustion flue gas in a bench-scale entrained-flow reactor[J].Fuel Processing Technology,2004,85:463-472 10.1016/j.fuproc.2003.11.002
[5] CORDOBA P, MAROTO-VALER M, DELGADO M A, et al.Speciation, behaviour, and fate of mercury under oxy-fuel combustion conditions[J].Environental Research,2016,145:154-161 10.1016/j.envres.2015.12.002
[6] UDDIN M A, YAMADA T, OCHIAI R, et al.Role of SO2 for elemental mercury removal from coal combustion flue gas by activated carbon[J].Energy & Fuels,2008,22:2284-2289 10.1021/ef800134t
[7] CLARKSON T W, MAGOS L.The toxicology of mercury and its chemical compounds[J].Critical Reviews in Toxicology,2006,36:609-662 10.1080/10408440600845619
[8] WANG J, WANG W H, XU W, et al.Mercury removals by existing pollutants control devices of four coal-fired power plants in China[J].Journal of Environmental Sciences,2011,23:1839-1844 10.1016/S1001-0742(10)60584-0
[9] ZHANG Y, YANG J P, YU X H, et al.Migration and emission characteristics of Hg in coal-fired power plant of China with ultra low emission air pollution control devices[J].Fuel Processing Technology,2017,158:272-280 10.1016/j.fuproc.2017.01.020
[10] SLIGER R N, KRAMLICH J C, MARINOV N M.Towards the development of a chemical kinetic model for the homogeneous oxidation of mercury by chlorine species[J].Fuel Processing Technology,2000,65:423-438 10.1016/S0378-3820(99)00108-3
[11] LEE C W, SRIVASTAVA R K, GHORISHI S B, et al.Investigation of selective catalytic reduction impact on mercury speciation under simulated NOx emission control conditions[J].Journal of the Air & Waste Management Association,2004,54:1560-1566 10.1080/10473289.2004.10471009
[12] PRESTO A A, GRANITE E J.Survey of catalysts for oxidation of mercury in flue gas[J].Environmental Science & Technology,2006,40:5601-5609 10.1021/es060504i
[13] GAO W, LIU Q C, WU C Y, et al.Kinetics of mercury oxidation in the presence of hydrochloric acid and oxygen over a commercial SCR catalyst[J].Chemical Engineering Journal,2013,220:53-60 10.1016/j.cej.2013.01.062
[14] YU C L, HUANG B C, DONG L F, et al.Effect of Pr/Ce addition on the catalytic performance and SO2 resistance of highly dispersed MnOx/SAPO-34 catalyst for NH3-SCR at low temperature[J].Chemical Engineering Journal,2017,316:1059-1068 10.1016/j.cej.2017.02.024
[15] YU C L, DONG L F, CHEN F, et al.Low temperature SCR of NOx by NH3 over MnOx/SAPO-34 prepared by two different methods a comparative study[J].Environental Technology,2017,38:1030-1042 10.1080/09593330.2016.1216170
[16] YU J, GUO F, WANG Y L,et al.Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3[J].Applied Catalysis B: Environmental,2010,95:160-168 10.1016/j.apcatb.2009.12.023
[17] FERNáNDEZ-MIRANDA N, LOPEZ-ANTON M A, DíAZ-SOMOANO M, et al.Mercury oxidation in catalysts used for selective reduction of NOx (SCR) in oxy-fuel combustion[J].Chemical Engineering Journal,2016,285:77-82 10.1016/j.cej.2015.10.022
[18] WANG F M, LI G L, SHEN B X, et al.Mercury removal over the vanadia–titania catalyst in CO2-enriched conditions[J].Chemical Engineering Journal,2015,263:356-963 10.1016/j.cej.2014.10.091
[19] ZHUANG Y, LAUMB J, LIGGETT R, et al.Impacts of acid gases on mercury oxidation across SCR catalyst[J].Fuel Processing Technology,2007,88:929-934 10.1016/j.fuproc.2007.03.010
[20] LIU R, XU W Q, TONG L, et al.Mechanism of Hg(0) oxidation in the presence of HCl over a commercial V2O5-WO3/TiO2 SCR catalyst[J].Journal Environental Sciences,2015,36:76-83 10.1016/j.jes.2015.03.031
[21] BEALE A M, GAO F, LEZCANO-GONZALEZ I, et al.Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials[J].Chemical Society Reviews,2015,44:7371-7405 10.1039/C5CS00108K
[22] WANG J H, ZHAO H W, HALLER G, et al.Recent advances in the selective catalytic reduction of NOx with NH3 on Cu-Chabazite catalysts[J].Applied Catalysis B: Environmental,2017,202:346-354 10.1016/j.apcatb.2016.09.024
[23] NIU C, SHI X Y, LIU K, et al.A novel one-pot synthesized CuCe/SAPO-34 catalyst with high NH3-SCR activity and H2O resistance[J].Catalysis Communications,2016,81:20-23 10.1016/j.catcom.2016.04.007
[24] PETITTO C, DELAHAY G.Selective catalytic reduction of NOx by NH3 on Cu/SAPO-34 catalysts: Influence of silicium content on the activity of calcined and hydrotreated samples[J].Chemical Engineering Journal,2015,264:404-410 10.1016/j.cej.2014.11.111
[25] MA L, CHENG Y S, CAVATAIO G, et al.Characterization of commercial Cu/SSZ-13 and Cu/SAPO-34 catalysts with hydrothermal treatment for NH3 SCR of NOx in diesel exhaust[J].Chemical Enginnering Journal,2013,225:323-330 10.1016/j.cej.2013.03.078
[26] WANG D, JANGJOU Y, LIU Y, et al.A comparison of hydrothermal aging effects on NH3 SCR of NOx over Cu/SSZ-13 and Cu/SAPO-34 catalysts[J].Applied Catalysis B: Environmental,2015,165:438-445 10.1016/j.apcatb.2014.10.020
[27] SU W K, LI Z G, PENG Y, et al.Correlation of the changes in the framework and active Cu sites for typical Cu/CHA zeolites (SSZ-13 and SAPO-34) during hydrothermal aging[J].Physical Chemistry Chemical Physics,2015,17:29142-29149 10.1039/C5CP05128B
[28] WANG L, LI W, QI G S, et al.Location and nature of Cu species in Cu/SAPO-34 for selective catalytic reduction of NO with NH3[J].Journal of Catalysis,2012,289:21-29 10.1016/j.jcat.2012.01.012
[29] YAN C D, CHENG H, YUAN Z S, et al.The role of isolated Cu2+ location in structural stability of Cu-modified SAPO-34 in NH3 SCR of NO[J].Environental Technology,2015,36:169-177 10.1080/09593330.2014.941017
[30] YU T, WANG J, SHEN M Q, et al.The influence of CO2 and H2O on selective catalytic reduction of NO by NH3 over Cu/SAPO-34 catalyst[J].Chemical Engineering Journal,2015,264:845-855 10.1016/j.cej.2014.12.017
[31] LI J H, LIANG X, XU S C, et al.Catalytic performance of manganese cobalt oxides on methane combustion at low temperature[J].Applied Catalysis B: Environmental,2009,90:307-312 10.1016/j.apcatb.2009.03.027
[32] GAO W, LIU Q, WU C Y, et al.Kinetics of mercury oxidation in the presence of hydrochloric acid and oxygen over a commercial SCR catalyst[J].Chemical Engineering Journal,2013,220:53–60 10.1016/j.cej.2013.01.062
[33] 乔仁静,许琦,陈凯歌,等.溶胶-凝胶法制备高比表面积CeO2-TiO2催化剂及其在模拟烟气中脱除Hg0性能的研究[J]. 环境工程学报,2017,11(10):5535-5542 10.12030/j.cjee.201612123
[34] CAO Y, BOBBY C, WU J, et al.Study of mercury oxidation by a selective catalytic reduction catalyst in a pilot-scale slipstream reactor at a utility boiler burning bituminous coal[J].Energy Fuels,2007,21(1):145-156 10.1021/ef0602426