[1] CHEN D, GUO H, XU J, et al. Recovery of iron from pyrite cinder containing non-ferrous metals using high-temperature chloridizing-reduction-magnetic separation [J]. Metallurgical and Materials Transactions B, 2017, 48B: 933-942.
[2] 金程, 李登新. 硫酸烧渣中铁的综合利用研究进展[J]. 金属矿山, 2011(10): 162-165.
[3] 叶志平, 何国伟. 硫酸渣资源化及其以废治废技术研究[J]. 华南师范大学学报 (自然科学版), 2010, 42(2): 72-75.
[4] 王全亮. 某硫酸烧渣提纯降杂工艺试验研究[J].有色金属(选矿部分), 2009(5): 21-25.
[5] LIN Z, QVARFORT U. Predicting the mobility of Zn, Fe, Cu, Pb, Cd from roasted sulfide (pyrite) residues: A case study of wastes from the sulfuric acid industry in Sweden [J]. Waste Management, 1997, 16: 671-681.
[6] DING J, HAN P, LV C, et al. Utilization of gold-bearing and iron-rich pyrite cinder via a chlorination-volatilization process [J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(11): 1-10.
[7] AIP I, DEVECI H, YAZICI E Y, et al. Potential use of pyrite cinders as raw material in cement production: Results of industrial scale trial operations [J]. Journal of Hazardous Materials, 2009, 166 (1): 144-149.
[8] YANG C, CHEN Y, PENG P, et al. Trace element transformations and partitioning during the roasting of pyrite ores in the sulfuric acid industry [J]. Journal of Hazardous Materials, 2009, 167: 835-845.
[9] GIUNTI M, BARONI D, BACCI E. Hazard assessment to workers of trace metal content in pyrite cinders [J]. Bulletin of Environmental Contamination and Toxicology, 2004, 72: 352-357.
[10] LONG H, CHUN T, DI Z, et al. Preparation of metallic iron powder from pyrite cinder by carbothermic reduction and magnetic separation [J]. Metals, 2016, 6(4): 88-96.
[11] ZHU D Q, CHUN T J, PAN J, et al. Preparation of oxidised pellets using pyrite cinders as raw material [J]. Ironmaking & Steelmaking, 2013, 40: 430-435.
[12] WANG J, LUO L, KONG H, et al. The arsenic removal from molten steel [J]. High Temperature Materials and Processes, 2011, 30: 171-173.
[13] WANG Y, XIAO L, LIU Y, et al. Alkalic leaching and stabilization of arsenic from pyrite cinders [J]. The Open Waste Management Journal, 2017, 10: 41-50.
[14] 常耀超, 徐晓辉, 王云. 高砷硫酸烧渣脱砷及高温氯化回收金银 [J]. 有色金属(冶炼部分), 2015(6): 46-49.
[15] SHI Z, WANG M, ZHANG G, et al. Leaching and kinetic modeling of pyrite cinder in sulphuric acid [J]. Asian Journal of Chemistry, 2013, 25(1): 105-109.
[16] 张广伟, 徐政, 李岩. 利用含砷硫酸烧渣生产铁精矿的试验研究[J]. 矿业研究与开发, 2013, 33(1): 34-37.
[17] CHOONG T, CHUAH T, ROBIAH Y, et al. Arsenic toxicity, health hazards and removal techniques from water: An overview [J]. Desalination, 2007, 217: 139-166.
[18] 游洋, 闵小波, 彭兵, 等. 碱性高砷渣晶化稳定处理技术研究 [J]. 有色金属科学与工程, 2015, 6(6): 24-28.
[19] 张明琴, 周新涛, 罗中秋, 等. 石灰-铁盐法处理工业含砷废水研究进展 [J]. 硅酸盐通报,2016, 35(8): 2447-2453.
[20] KRAUSE E, ETTEL V. Solubilities and stabilities of ferric arsenate compounds [J]. Hydrometallurgy, 1989, 22(3): 311-337.
[21] FUJITA T, TAGUCHI R, ABUMIYA M, et al.Effect of pH on atmospheric scorodite synthesis by oxidation of ferrous ions: Physical properties and stability of the scorodite [J]. Hydrometallurgy, 2009, 96: 189-198.
[22] DAENZER R, XU L, DOERFELT C, et al. Precipitation behaviour of As(V) during neutralization of acidic Fe(II)-As(V) solutions in batch and continuous modes [J]. Hydrometallurgy, 2014, 146: 40-47.
[23] SINGHANIA S, WANG Q, FILIPPOU D, et al. Acidity, valency and third-ion effects on the precipitation of scorodite from mixed sulfate solutions under atmospheric-pressure conditions [J]. Metallurgical and Materials Transactions B, 2006, 37(2): 189-197.
[24] TWIDWELL L G, MCLOSKEY J W. Removing arsenic from aqueous solution and longterm product storage [J]. JOM, 2011, 63 (8): 94-100.