[1] 吴爱民, 荆继红, 宋博. 略论中国水安全问题与地下水的保障作用[J]. 地质学报, 2016, 90(10): 2939-2947.
[2] 中国人民共和国水利部. 中国水资源公报[M]. 北京: 中国水利水电出版社, 2016.
[3] TONG L, HUANG S, WANG Y, et al. Occurrence of antibiotics in the aquatic environment of Jianghan Plain, central China[J]. Science of the Total Environment, 2014, 497: 180-187.
[4] JONES O A, LESTER J N, VOULVOULIS N. Pharmaceuticals: A threat to drinking water? [J]. Trends in Biotechnology, 2005, 23(4): 163-167.
[5] BOXALL A B A, BLACKWELL P, CAVALLO R, et al. The sorption and transport of a sulphonamide antibiotic in soil systems[J]. Toxicology Letters, 2002, 131: 19-28.
[6] 张从良, 王岩, 王福安. 磺胺类药物在土壤中的微生物降解[J]. 农业环境科学学报, 2007, 26(5): 1658-1662.
[7] HUBER M M, CANONICA S, PARK G Y, et al. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes[J]. Environmental Science & Technology, 2003, 37: 1016-1024.
[8] RADJENOVIC J, PETROVIC M, VENTURA F, et al. Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment[J]. Water Research, 2008 , 42(14): 3601-3610.
[9] SHARMA V K. Oxidantive transformations of envioronmental pharmaceuticas by Cl2, ClO2, O3, and Fe(IV): Kinetics assessment [J]. Chemosphere, 2008, 73(9): 1379-1386.
[10] BRITTO J M, RANGEL M C. Advanced oxidation orocess of phenolic compounds in industrial wasterwater[J]. Quim Nova, 2008, 31: 114-122.
[11] AMROSE S, GADGIL A, SRINIVASAN V, et al. Arsenic removal from groundwater using iron electrocoagulation: Effect of charge dosage rate[J]. Journal of Environmental Science and Health, 2013, 48(9): 1019-1030.
[12] LI L, GENUCHTEN C M VAN, ADDY S E, et al. Modeling As(III) oxidation and removal with iron electrocoagulation in groundwater[J]. Environmental Science & Technology, 2012, 46(21): 12038-12045.
[13] XIE S, YUAN S, LIAO P, et al. Iron-anode enhanced sand filter for arsenic removal from tube well water[J]. Environmental Science & Technology, 2017, 51(2): 889-896.
[14] TONG M, YUAN S, ZHANG P, et al. Electrochemically induced oxidative precipitation of Fe (II) for As (III) oxidation and removal in synthetic groundwater[J]. Environmental Science & Technology, 2014, 48(9): 5145-5153.
[15] BATAINEH H, PESTOVSKY O, BAKAC A. pH-induced mechanistic changeover from hydroxyl radicals to iron (IV) in the Fenton reaction[J]. Chemical Science, 2012, 3(5): 1594-1599.
[16] KEENAN C R, SEDLAK D L. Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen[J]. Environmental Science & Technology, 2008, 42(4): 1262-1267.
[17] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/?O) in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886.
[18] PHAM A N, WAITE T D. Oxygenation of Fe (II) in natural waters revisited: Kinetic modeling approaches, rate constant estimation and the importance of various reaction pathways[J]. Geochimicaet Cosmochimica Acta, 2008, 72(15): 3616-3630.
[19] LAKSHMANAN D, CLIFFORD D A, SAMANTA G. Ferrous and ferric ion generation during iron electrocoagulation[J]. Environmental Science & Technology, 2009, 43(10): 3853-3859.
[20] HUG S J, LEUPIN O. Iron-catalyzed oxidation of arsenic (III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction[J]. Environmental Science & Technology, 2003, 37(12): 2734-2742.
[21] BOCOS E, BRILLAS E, SANROMA?N M A, et al. Electrocoagulation: Simply a phase separation technology? The case of bronopol compared to its treatment by EAOPs[J]. Environmental Science & Technology, 2016, 50(14): 7679-7686.
[22] BUXTON G V, ELLIOT A J. Rate constant for reaction of hydroxyl radicals with bicarbonate ions[J]. Radiation Physics & Chemistry, 1986, 27(3): 241-243.
[23] CHEN S N, HOFFMAN M Z, PARSONS G H. Reactivity of the carbonate radical toward aromatic compounds in aqueous solution[J]. Journal of Physical Chemistry, 1975, 79(18): 1911-1912.
[24] BIANCO B, DEMICHELIS I. Fenton treatment of complex industrial wastewater: Optimization of process conditions by surface response method[J]. Journal of Hazardous Materials, 2011, 186(2/3): 1733-1738.