[1] PULICHARLA R, BRAR S K, DROGUI P, et al. Removal processes of antibiotics in waters and wastewaters: Crucial link to physical-chemical properties and degradation[J]. Journal of Hazardous Toxic & Radioactive Waste, 2015, 19(4): 04015008.
[2] 杨晓芳, 杨涛, 王莹, 等. 四环素类抗生素污染现状及其环境行为研究进展[J]. 环境工程, 2014, 32(2): 123-127.
[3] CENGI?Z M, BALCI?OGLU I, ORUC H H. Detection of oxytetracycline and chlortetracycline residues in agricultural fields in Turkey[J]. Journal of Biological & Environmental Sciences, 2010, 4(10): 23-27.
[4] DAGHRIR R, DROGUI P. Tetracycline antibiotics in the environment: A review[J]. Environmental Chemistry Letters, 2013, 11(3): 209-227.
[5] SIMAZAKI D, KUBOTA R, SUZUKI T, et al. Occurrence of selected pharmaceuticals at drinking water purification plants in Japan and implications for human health[J]. Water Research, 2015, 76: 187-200.
[6] ORGANIZATION W H. Antimicrobial resistance: Global report on surveillance[J]. Australasian Medical Journal, 2014, 7(5): 238-239.
[7] MA W L, QI R, ZHANG Y, et al. Performance of a successive hydrolysis, denitrification and nitrification system for simultaneous removal of COD and nitrogen from terramycin production wastewater[J]. Biochemical Engineering Journal, 2009, 45(1): 30-34.
[8] MA W , YANG M , WANG J , et al. Treatment of antibiotics wastewater utilizing successive hydrolysis, denitrification and nitrification[J]. Environmental Technology Letters, 2002, 23(6): 685-694.
[9] 张昱, 唐妹, 田哲, 等. 制药废水中抗生素的去除技术研究进展[J]. 环境工程学报, 2018, 12(1): 123-127.
[10] KEMPER N. Veterinary antibiotics in the aquatic and terrestrial environment[J]. Ecological Indicators, 2008, 8(1): 1-13.
[11] OTURAN N, WU J, ZHANG H, et al. Electrocatalytic destruction of the antibiotic tetracycline in aqueous medium by electrochemical advanced oxidation processes: Effect of electrode materials[J]. Applied Catalysis B: Environmental, 2013, 140-141: 92-97.
[12] ZHENG Y, HUANG M H, CHEN L, et al. Comparison of tetracycline rejection in reclaimed water by three kinds of forward osmosis membranes[J]. Desalination, 2015, 359: 113-122.
[13] SIRéS I, BRILLAS E. Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: A review[J]. Environment International, 2012, 40: 212-229.
[14] 李喆钦, 周庆, 李爱民. 水体中四环素类抗生素的去除技术研究进展[J]. 环境保护科学, 2012, 38(4): 15-18.
[15] DAGHRIR R, DROGUI P. Tetracycline antibiotics in the environment: A review[J]. Environmental Chemistry Letters, 2013, 11(3): 209-227.
[16] OUAISSA Y A, CHABANI M, AMRANE A, et al. Removal of tetracycline by electrocoagulation: Kinetic and isotherm modeling through adsorption[J]. Journal of Environmental Chemical Engineering, 2014, 2(1): 177-184.
[17] BARAN W, ADAMEK E, JAJKO M, et al. Removal of veterinary antibiotics from wastewater by electrocoagulation[J]. Chemosphere, 2017, 194: 381-389.
[18] WANG H, YAO H, SUN P Z, et al. Transformation of tetracycline antibiotics and Fe(II)/(III) species induced by their complexation[J]. Environmental Science & Technology, 2015, 50(1): 145-153.
[19] WANG H, YAO H, SUN P, et al. Oxidation of tetracycline antibiotics induced by Fe(III) ions without light irradiation[J]. Chemosphere, 2015 , 119(2): 1255-1261.
[20] 杨旭, 王建华. 四环素类金属离子配合物应用研究进展[J]. 食品工业科技, 2016, 37(11): 362-366.
[21] DANESHVAR N, OLADEGARAGOZE A, DJAFARZADEH N. Decolorization of basic dye solutions by electrocoagulation: An investigation of the effect of operational parameters[J]. Journal of Hazardous Materials, 2006, 129(1): 116-122.
[22] 张峰振, 杨波, 张鸿, 等. 电絮凝法进行废水处理的研究进展[J]. 工业水处理, 2012, 32(12): 11-16.
[23] ZAIED M, BELLAKHAL N. Electrocoagulation treatment of black liquor from paper industry[J]. Journal of Hazardous Materials, 2009, 163(2/3): 995-1000.
[24] HEIDMANN I, CALMANO W. Removal of Zn(II), Cu(II), Ni(II), Ag(I) and Cr(VI) present in aqueous solutions by aluminium electrocoagulation[J]. Journal of Hazardous Materials, 2008, 152(3): 934-941.
[25] LINARES C F, MARíA B. Interaction between antimicrobial drugs and antacid based on cancrinite-type zeolite[J]. Microporous & Mesoporous Materials, 2006, 96(1): 141-148.
[26] 文美琼, 李露. 四环素-铁(Ⅲ)配合物与DNA相互作用的吸收光谱研究[J]. 光谱实验室, 2008(2): 226-228.
[27] 熊慧欣, 周立祥. 不同晶型羟基氧化铁(FeOOH)的形成及其在吸附去除Cr(Ⅵ)上的作用[J]. 岩石矿物学杂志, 2008, 27(6): 559-566.
[28] 杨金梅, 吕建波, 李莞璐, 等. 壳聚糖载纳米羟基氧化铁对水中磷的吸附[J]. 环境工程学报, 2018, 12(5): 14-22.
[29] 付丹丹. 腐殖酸对A-羟基氧化铁、Γ-羟基氧化铁吸附砷的影响研究[D]. 上海: 华东师范大学, 2017.
[30] 孙丽华, 俞天敏, 齐晓璐, 等. 原位生成羟基氧化铁凝聚吸附除磷影响因素研究[J]. 给水排水, 2015(7): 128-132.