[1] 张辉, 付融冰, 郭小品, 等. 铬污染土壤的还原稳定化修复[J]. 环境工程学报, 2017, 11(11): 383-388.
[2] KATAYAMA H, BANBA N, SUGIMURA Y, et al. Subcellular compartmentation of strontium and zinc in mulberry idioblasts in relation to phytoremediation potential[J]. Environmental & Experimental Botany, 2013, 85(1): 30-35.
[3] CESTONE B, QUARTACCI M F, NAVARIIZZO F. Uptake and translocation of CuEDDS complexes by Brassica carinata[J]. Environmental Science & Technology, 2010, 44(16): 6403-6408.
[4] REZVANI M, ZAEFARIAN F, MIRANSARI M, et al. Uptake and translocation of cadmium and nutrients by Aeluropus littoralis[J]. Archives of Agronomy and Soil Science, 2012, 58(12): 1413-1425.
[5] 徐卫红, 王宏信, 王正银, 等. 重金属富集植物黑麦草对锌、镉复合污染的响应[J]. 中国农学通报, 2006, 22(6): 365.
[6] 张晓斌, 梁宵, 占新华, 等. 菲污染土壤黑麦草/苜蓿间作修复效应[J]. 环境工程学报, 2013, 7(5): 1974-1978.
[7] ZHIVOTOVSKY O P, KUZOVKINA Y A, SCHULTHESS C P, et al. Lead uptake and translocation by willows in pot and field experiments[J]. International Journal of Phytoremediation, 2011, 13(8): 731-749.
[8] BARBAROUX R, PLASARI E, MERCIER G, et al. A new process for nickel ammonium disulfate production from ash of the hyperaccumulating plant Alyssum murale[J]. Science of the Total Environment, 2012, 423: 111-119.
[9] CHEN Y, SHEN Z, LI X. The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals[J]. Applied Geochemistry, 2004, 19(10): 1553-1565.
[10] LU S, DU Y, ZHONG D, et al. Comparison of trace element emissions from thermal treatments of heavy metal hyperaccumulators[J]. Environmental Science & Technology, 2012, 46(9): 5025-5031.
[11] BARBAROUX R, PLASARI E, MERCIER G, et al. A new process for nickel ammonium disulfate production from ash of the hyperaccumulating plant Alyssum murale[J]. Science of the Total Environment, 2012, 423: 111-119.
[12] CAO X, MA L, SHIRALIPOUR A, et al. Biomass reduction and arsenic transformation during composting of arsenic-rich hyperaccumulator Pteris vittata L[J]. Environmental Science & Pollution Research International, 2010, 17(3): 586-594.
[13] LIU W J, TIAN K, JIANG H, et al. Selectively improving the bio-oil quality by catalytic fast pyrolysis of heavy-metal-polluted biomass: Take copper (Cu) as an example[J]. Environmental Science and Technology, 2012, 46(14): 7849-7856.
[14] 宋玉婷, 雷泞菲, 李淑丽. 植物修复重金属污染土地的研究进展[J]. 国土资源科技管理, 2018, 35(5): 58-68.
[15] 张祥辉, 肖伟, 唐俊杰, 等. 强启动真菌在牧草降解减容过程中的应用[J]. 中国农学通报, 2016, 32(23): 16-21.
[16] 宋收, 陈晓明, 肖伟, 等. 基于BIOLOG指纹解析土壤可培微生物对铀污染的响应[J]. 核农学报, 2016, 30(6): 1169-1177.
[17] 戚鑫, 陈晓明, 肖诗琦, 等. 生物炭固定化微生物对U、Cd污染土壤的原位钝化修复[J]. 农业环境科学学报, 2018, 37(8): 1683-1689.
[18] 唐永金, 罗学刚, 曾峰, 等. 不同植物对高浓度铀胁迫的响应与铀富集植物筛选[J]. 核农学报, 2013, 27(12): 1920-1926.
[19] 贾永霞, 张春梅, 方继宇, 等. 细叶百日草对镉的生长响应及富集特征研究[J]. 核农学报, 2015, 29(8): 1577-1582.
[20] 郝希超, 陈晓明, 罗学刚, 等. 不同牧草在铀胁迫下生长及铀富集的比较研究[J]. 核农学报, 2016, 30(3): 548-555.
[21] 王金主, 王元秀, 李峰, 等. 玉米秸秆中纤维素、半纤维素和木质素的测定[J]. 山东食品发酵, 2010(3): 44-47.
[22] 王建庆, 曹佃元, 张玉. 乙酰溴法测定棉籽壳中木质素的含量[J]. 纺织学报, 2013, 34(9): 12-16.
[23] SHTANGEEVA I. Uptake of uranium and thorium by native and cultivated plants[J]. Journal of Environmental Radioactivity, 2010, 101(6): 458-463.
[24] 苏瑞, 马玉洁, 马骏, 等. 培养条件对黄孢原毛平革菌降解稻草的研究[J]. 西南民族大学学报(自然科学版), 2009, 35(2): 293-296.
[25] 王毅, 刘云国, 习兴梅, 等. 枯草芽胞杆菌降解木质纤维素能力及产酶研究[J]. 微生物学杂志, 2008, 28(4): 1-6.
[26] SINGH J, KALAMDHAD A S. Concentration and speciation of heavy metals during water hyacinth composting[J]. Bioresource Technology, 2012, 124(3): 169-179.
[27] 王莉, 陈晓明, 肖伟, 等. 氧化亚铁硫杆菌(Thiobacillus ferrooxidans)对重金属富集植物腐蚀作用研究[J]. 农业环境科学学报, 2016, 35(12): 2420-2430.