[1] |
GUPTA R C. Handbook of Toxicology of Chemical Warfare Agents[M]. London: Academic Press, 2009.
|
[2] |
MOTAMEDHASHEMI M M Y, EGOLFOPOULOS F, TSOTSIS T. Application of a flow-through catalytic membrane reactor (FTCMR) for the destruction of a chemical warfare simulant[J]. Journal of Membrane Science, 2011, 376(1/2): 119-131.
|
[3] |
GRAVEN W M, WELLER S W, PETERS D L. Catalytic conversion of an organophosphate vapor over platinum-alumina[J]. Industrial & Engineering Chemistry Process Design and Development, 1966, 5(2): 183-189.
|
[4] |
MONJI M, CIORA R, LIU P K T, et al. Thermocatalytic decomposition of dimethyl methylphosphonate (DMMP) in a multi-tubular, flow-through catalytic membrane reactor[J]. Journal of Membrane Science, 2015, 482: 42-48.
|
[5] |
MOTAMEDHASHEMI M M Y, EGOLFOPOULOS F, TSOTSIS T. Flow-through catalytic membrane reactors for the destruction of a chemical warfare simulant: Dynamic performance aspects[J]. Catalysis Today, 2016, 268:130-141.
|
[6] |
LIM K I, SONG Y I, NAM I S, et al. Effect of support on the decomposition of DMMP over Pt based catalysts[C]//National Technical Information Service. Proceedings of the ERDEC scientific conference on chemical and biological defense research. Harford County, 1996: 761-766.
|
[7] |
MOTAMEDHASHEMI M M Y, MONJI M, EGOLFOPOULOS F, et al. A hybrid catalytic membrane reactor for destruction of a chemical warfare simulant[J]. Journal of Membrane Science, 2015, 473: 1-7.
|
[8] |
TZOU T Z, WELLER S W. Catalytic oxidation of dimethyl methylphosphonate[J]. Journal of Catalysis, 1994, 146(2): 370-374.
|
[9] |
RYU S G, YANG J K, LEE H W, et al. Decomposition of dimethyl methylphosphonate over alumina-supported precious metal catalysts[J]. Hwahak Konghak, 1995, 33(4): 462-470.
|
[10] |
RATLIFF J S, TENNEY S A, HU X, et al. Decomposition of dimethyl methylphosphonate on Pt, Au, and Au-Pt clusters supported on TiO2(110)[J]. Langmuir, 2009, 25(1): 216-225.
|
[11] |
PANAYOTOV D A, MORRIS J R. Catalytic degradation of a chemical warfare agent simulant: Reaction mechanisms on TiO2-supported Au nanoparticles[J]. Journal of Physical Chemistry C, 2008, 112(19): 7496-7502.
|
[12] |
HENDERSON M A, WHITE J M. Adsorption and decomposition of dimethyl methylphosphonate on platinum(111)[J]. Journal of the American Chemical Society, 1988, 110(21): 6939-6947.
|
[13] |
TEMPLETON M K, WEINBERG W H. Adsorption and decomposition of dimethyl methylphosphonate on an aluminum oxide surface[J]. Journal of the American Chemical Society, 1985, 107(1): 97-108.
|
[14] |
RUSU C N, YATES J T. Adsorption and decomposition of dimethyl methylphosphonate on TiO2[J]. Journal of Physical Chemistry B, 2000, 104(51): 12292-12298.
|
[15] |
PANAYOTOV D A, MORRIS J R. Thermal decomposition of a chemical warfare agent simulant (DMMP) on TiO2: Adsorbate reactions with lattice oxygen as studied by infrared spectroscopy[J]. Journal of Physical Chemistry C, 2009, 113(35): 15684-15691.
|
[16] |
MITCHELL M B, SHEINKER V N, MINTZ E A. Adsorption and decomposition of dimethyl methylphosphonate on metal oxides[J]. Journal of Physical Chemistry B, 1997, 101(51): 11192-11203.
|
[17] |
CHEN D A, RATLIFF J S, HU X, et al. Dimethyl methylphosphonate decomposition on fully oxidized and partially reduced ceria thin films[J]. Surface Science, 2010, 604(5/6): 574-587.
|
[18] |
TESFAI T M, SHEINKER V N, MITCHELL M B. Decomposition of dimethyl methylphosphonate (DMMP) on alumina-supported iron oxide[J]. Journal of Physical Chemistry B, 1998, 102(38): 7299-7302.
|
[19] |
ZHOU J, MA S, KANG Y C, et al. Dimethyl methylphosphonate decomposition on titania-supported Ni clusters and films: A comparison of chemical activity on different Ni surfaces[J]. Journal of Physical Chemistry B, 2004, 108(31): 11633-11644.
|
[20] |
CAO L, SUIB S L, TANG X, et al. Thermocatalytic decomposition of dimethyl methylphosphonate on activated carbon[J]. Journal of Catalysis, 2001, 197(2): 236-243.
|
[21] |
WAN H, WANG Z, ZHU J, et al. Influence of CO pretreatment on the activities of CuO/gama-Al2O3 catalysts in CO + O2 reaction[J]. Applied Catalysis B: Environmental, 2008, 79(3): 254-261.
|
[22] |
LUO M, FANG P, HE M, et al. In-situ XRD, Raman, and TPR studies of CuO/Al2O3 catalysts for CO oxidation[J]. Journal of Molecular Catalysis A: Chemical, 2005, 239(1): 243-248.
|
[23] |
FANG P, XIE Y, LUO M, et al. In-situ XRD and Raman spectroscopic study on the solid state reaction of CuO/Al2O3 catalysts at high temperature[J]. Acta Physico Chimica Sinica, 2005, 21(1): 102-105.
|
[24] |
LI Y X, SCHLUP J R, KLABUNDE K J. Fourier-transform infrared photoacoustic-spectroscopy study of the adsorption of organophosphorus compounds on heat-treated magnesium-oxide[J]. Langmuir, 1991, 7(7): 1394-1399.
|
[25] |
LI Y X, KOPER O, ATTEYA M, et al. Adsorption and decomposition of organophosphorus compounds on nanoscale metal oxide particles. Insitu GC-MS studies of pulsed microreactions over magnesium oxide[J]. Chemistry of Materials, 1992, 4(2): 323-330.
|
[26] |
MA S, ZHOU J, KANG Y C, et al. Dimethyl methylphosphonate decomposition on Cu surfaces: Supported Cu nanoclusters and films on TiO2(110)[J]. Langmuir, 2004, 20(22): 9686-9694.
|
[27] |
LEE K Y, HOUALLA M, HERCULES D M, et al. Catalytic oxidative decomposition of dimethyl methylphosphonate over Cu-substituted hydroxyapatite[J]. Journal of Catalysis, 1994, 145(1): 223-231.
|