[1] ZHENG S A, ZHANG M K. Effect of moisture regime on the redistribution of heavy metals in paddy soil[J]. Journal of Environmental Sciences, 2011, 23(3): 434-443.
[2] MUKWATURI M, LIN C. Mobilization of heavy metals from urban contaminated soils under water inundation conditions[J]. Journal of Hazardous Materials, 2015, 285:445-452.
[3] KITAGISHI K, YAMANE I. Heavy Metal Pollution in Soils of Japan[M]. Tokyo: Japan Scientific Societies Press, 1981.
[4] HAN F X, BANIN A. Long-term transformations and redistribution of potentially toxic heavy metals in arid-zone soils incubated: I. Under saturated conditions[J]. Water, Air and Soil Pollution, 1997, 95(1/2/3/4): 399-423.
[5] FENG X H, BANIN A. Long-term transformation and redistribution of potentially toxic heavy metals in arid-zone soils: II. Incubation at the field capacity moisture content[J]. Water, Air and Soil Pollution, 1999, 114(3/4): 221-250.
[6] KASHEM M A, SINGH B R. Metal availability in contaminated soils: I. Effects of flooding and organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn[J]. Nutrient Cycling in Agroecosystems, 2001, 61(3): 247-255.
[7] 朱丹妹, 刘岩, 张丽, 等. 不同类型土壤淹水对pH、Eh、Fe及有效态Cd含量的影响[J]. 农业环境科学学报, 2017, 36(8): 1508-1517.
[8] 刘昭兵, 纪雄辉, 彭华, 等. 水分管理模式对水稻吸收累积镉的影响及其作用机理[J]. 应用生态学报, 2010, 21(4): 908-914.
[9] 李义纯. 还原性土壤中镉活性变化及其制约机理研究[D]. 南京: 南京农业大学, 2009.
[10] 田桃, 曾敏, 周航, 等. 水分管理模式与土壤Eh值对水稻Cd迁移与累积的影响[J]. 环境科学, 2017, 38(1): 343-351.
[11] 任杰, 刘继东, 陈娟, 等. 醋渣和糠醛渣对赤泥中金属稳定性的影响[J]. 环境科学研究, 2016, 29(12): 1895-1903.
[12] PAN Y Y, KOOPMANS G F, BONTEN L T C, et al. Influence of pH on the redox chemistry of metal (hydr)oxides and organic matter in paddy soils[J]. Journal of Soils and Sediments, 2014, 14(10): 1713-1726.
[13] 邵兴华. 水稻土淹水过程铁氧化物转化对磷饱和度和磷、氮释放的影响[D]. 杭州: 浙江大学, 2005.
[14] SHAHEEN S M, KWON E E, BISWAS J K, et al. Arsenic, chromium, molybdenum, and selenium: Geochemical fractions and potential mobilization in riverine soil profiles originating from Germany and Egypt[J]. Chemosphere, 2017, 180: 553-563.
[15] BI C, ZHOU Y, CHEN Z, et al. Heavy metals and lead isotopes in soils, road dust and leafy vegetables and health risks via vegetable consumption in the industrial areas of Shanghai, China[J]. Science of the Total Environment, 2018, 619-620: 1349-1357.
[16] PAN Y Y, BONTEN L T C, KOOPMANS G F, et al. Solubility of trace metals in two contaminated paddy soils exposed to alternating flooding and drainage[J]. Geoderma, 2016, 261: 59-69.
[17] 丁昌璞, 徐仁扣. 土壤的氧化还原过程及其研究法[M]. 北京: 科学出版社, 2011.
[18] STUMM W, MORGAN J J. Aquatic Chemistry:An Introduction Emphasizing Chemical Equilibria in Natural Waters[M]. New York: Wiley Interscience, 1981.
[19] DAVRANCHE M, BOLLINGER J C. Heavy metals desorption from synthesized and natural iron and manganese oxyhydroxides: Effect of reductive conditions[J]. Journal of Colloid and Interface Science, 2000, 227(2): 531-539.
[20] FANG H, HUANG L, WANG J, et al. Environmental assessment of heavy metal transport and transformation in the Hangzhou Bay, China[J]. Journal of Hazardous Materials, 2016, 302(17): 447-457.
[21] 贺前锋, 桂娟, 刘代欢, 等. 淹水稻田中土壤性质的变化及其对土壤镉活性影响的研究进展[J]. 农业环境科学学报, 2016, 35(12): 2260-2268.
[22] 费杨, 阎秀兰, 李永华. 铁锰双金属材料在不同pH条件下对土壤As和重金属的稳定化作用[J]. 环境科学, 2018, 39(3): 1430-1437.
[23] CAPPUYNS V, SWENNENn R. The application of pH stat leaching tests to assess the pH-dependent release of trace metals from soils, sediments and waste materials[J]. Journal of Hazardous Materials, 2008, 158(1): 185-195.
[24] 贾华丽, 郗敏, 孔范龙, 等. 土壤溶解性有机质生物降解研究进展[J]. 生态科学, 2016, 35(2): 183-188.
[25] 郭微, 戴九兰, 王仁卿. 溶解性有机质影响土壤吸附重金属的研究进展[J]. 土壤通报, 2012, 43(3): 761-768.
[26] ZHENG S A, ZHENG X Q, CHEN C. Transformation of metal speciation in purple soil as affected by waterlogging[J]. International Journal of Environmental Science & Technology, 2013, 10(2): 351-358.