[1] NAWROCKI J, FIJOEK L. Catalytic ozonation: Effect of carbon contaminants on the process of ozone decomposition[J]. Applied Catalysis B: Environmental, 2013, 142-143: 307-314.
[2] VALDES H, TARDON R F, ZAROR C A. Role of surface hydroxyl groups of acid-treated natural zeolite on the heterogeneous catalytic ozonation of methylene blue contaminated waters[J]. Chemical Engineering Journal, 2012, 211-212(47): 388-395.
[3] XIONG Z, LAI B, YANG P. Insight into a highly efficient electrolysis-ozone process for, N, N-dimethylacetamide degradation: Quantitative analysis of the role of catalytic ozonation, Fenton-like and peroxone reactions[J]. Water Research, 2018, 4: 12-23.
[4] KASTNER J R, GANAGAVARM R, KOLAR P, et al. Catalytic ozonation of propanal using wood fly ash and metal oxide nanoparticle impregnated carbon[J]. Environmental Science & Technology, 2008, 42(2):556-562.
[5] ZHANG S, QUAN X, ZHENG J F, et al. Probing the interphase "HO, zone" originated by carbon nanotube during catalytic ozonation[J]. Water Research, 2017, 122: 86-95. doi: 10.1016/j.watres.2017.05.063
[6] GHERMANDI A, NUNES P A L D. A global map of coastal recreation values: Results from a spatially explicit meta-analysis[J]. Ecological Economics, 2013, 86: 1-15. doi: 10.1016/j.ecolecon.2012.11.006
[7] WANG Y, XIE Y, SUN H, et al. Efficient catalytic ozonation over reduced graphene oxide for p-hydroxylbenzoic acid (PHBA) destruction: Active site and mechanism[J]. ACS Applied Materials & Interfaces, 2016, 8(15): 9710-9720.
[8] CHEN Z, CHEN L, LIU X, et al. Removal of p-chlorophenol by ozone with M/ACF catalysts[J]. Environmental Pollution & Control, 2007, 12(15): 7714-7745.
[9] STOLZ A, FLOCH S L, REINERT L, et al. Melamine-derived carbon sponges for oil-water separation[J]. Carbon, 2016, 107:198-208. doi: 10.1016/j.carbon.2016.05.059
[10] XU Z, MIYAZAKI K, HORI T. Dopamine-induced superhydrophobic melamine foam for oil/water separation[J]. Advanced Materials Interfaces, 2015, 2(15): 1500255. doi: 10.1002/admi.201500255
[11] SONG S, YANG H, SU C, et al. Ultrasonic-microwave assisted synthesis of stable reduced graphene oxide modified melamine foam with superhydrophobicity and high oil adsorption capacities[J]. Chemical Engineering Journal, 2016, 306: 504-511. doi: 10.1016/j.cej.2016.07.086
[12] CHEN S, HE G, HU H, et al. Elastic carbon foam via direct carbonization of polymer foam for flexible electrodes and organic chemical absorption[J]. Energy & Environmental Science, 2013, 6(8): 2435-2439.
[13] ZHU L, GAO M, PEH C K N, et al. Self‐contained monolithic carbon sponges for solar‐driven interfacial water evaporation distillation and electricity generation[J]. Advanced Energy Materials, 2018, 8: 1702149. doi: 10.1002/aenm.201702149
[14] STOLZ A, FLOCH S L, REINERT L, et al. Melamine-derived carbon sponges for oil-water separation[J]. Carbon, 2016, 107:198-208. doi: 10.1016/j.carbon.2016.05.059
[15] HAN Q, WANG B, GAO J, et al. Atomically thin mesoporous nanomesh of graphitic-C3N4 for high-efficiency photocatalytic hydrogen evolution[J]. ACS Nano, 2016, 10(2): 2745-2751. doi: 10.1021/acsnano.5b07831
[16] VARANASI S, LOW Z X, BATCHELOR W, et al. Cellulose nanofibre composite membranes-biodegradable and recyclable UF membranes[J]. Chemical Engineering Journal, 2015, 265(1): 138-146.
[17] ARAQUE J C, DALY R P, MARGULIS C J, et al. A link between structure, diffusion and rotations of hydrogen bonding tracers in ionic liquids[J]. Journal of Chemical Physics, 2016, 144(20): 11697-7029.
[18] LI X, CHEN W, MA L, et al. Industrial wastewater advanced treatment via catalytic ozonation with an Fe-based catalyst[J]. Chemosphere, 2017, 195: 336-343.
[19] XIAO J, RABECH J, JIN Y, et al. Fast electron transfer and·OH formation: Key features for high activity in visible-light-driven ozonation with C3N4 catalysts[J]. ACS Catalysis, 2017, 7(9): 6198-6206. doi: 10.1021/acscatal.7b02180
[20] LEE J S, PARK G S, KIM S T, et al. A highly efficient electrocatalyst for the oxygen reduction reaction: N-doped ketjenblack incorporated into Fe/Fe3C-functionalized melamine foam[J]. Angewandte Chemie, 2013, 52(3): 1026-1030. doi: 10.1002/anie.201207193