[1] 段先月, 唐朝春, 吴庆庆, 等.农村污水现状及处理技术研究进展[J].水处理技术, 2018, 44(9): 27-31.
[2] ZOU J, GUO X S, HAN Y P, et al. Study of a novel vertical flow constructed wetland system with drop aeration for rural wastewater treatment[J]. Water, Air & Soil Pollution, 2012, 223(2): 889-900.
[3] 易齐涛, 李慧, 章磊, 等.厌氧/生物滤池/潜流人工湿地组合工艺处理农村生活污水效果评估[J].环境工程学报, 2016, 10(5): 2394-2400.
[4] 张亚琼, 崔丽娟, 李伟, 等.潮汐流人工湿地基质硝化反硝化强度研究[J].生态环境学报, 2015, 24(3): 480-483.
[5] 郑晓英, 乔露露, 王慰, 等.碳源对反硝化生物滤池运行及微生物种群的影响[J].环境工程学报, 2018, 12(5): 1434-1442.
[6] 曹相生, 钱栋, 孟雪征.乙酸钠为碳源时的污水反硝化规律研究[J].中国给水排水, 2011, 27(21): 76-79.
[7] 邵留, 徐祖信, 金伟, 等.农业废物反硝化固体碳源的优选[J].中国环境科学, 2011, 31(5): 748-754.
[8] 李乐乐, 张卫民, 何江涛, 等.玉米秸秆碳源释放特征及反硝化效果[J].环境工程学报, 2015, 9(1): 113-118.
[9] 夏艳阳, 崔理华, 黄小龙.污水碳源对复合垂直流-水平流人工湿地脱氮效果的影响[J].环境工程学报, 2017, 11(1): 638-644.
[10] TORRIJOS V, GONZALO O G, TRUEBA-SANTISO A, et al. Effect of by-pass and effluent recirculation on nitrogen removal in hybrid constructed wetlands for domestic and industrial wastewater treatment[J]. Water Reseach, 2016, 103: 92-100. doi: 10.1016/j.watres.2016.07.028
[11] 余灿.改良A2/O碳源分流比及外加黄水补充碳源可行性研究[D].武汉: 武汉理工大学, 2012.http://cdmd.cnki.com.cn/Article/CDMD-10497-1012406060.htm
[12] WANG Z, HUANG M L, QI R, et al. Enhancing nitrogen removal via the complete autotrophic nitrogen removal over nitrite process in a modified single-stage tidal flow constructed wetland[J]. Ecological Engineering, 2017, 103: 170-179. doi: 10.1016/j.ecoleng.2017.04.005
[13] 胡沅胜, 赵亚乾, 赵晓红.强化总氮去除的改进型潮汐流人工湿地[J].中国给水排水, 2015, 31(15): 133-138.
[14] JU X X, WU S B, ZHANG Y S, et al. Intensified nitrogen and phosphorus removal in a novel electrolysis-integrated tidal flow constructed wetland system[J]. Water Research, 2014, 59(4): 37-45.
[15] ZHI W, JI G D. Quantitative response rslationships between nitrogen transformation rates and nitrogen functional genes in a tidal flow constructed wetland under C/N ratio constraints[J]. Water Research, 2014, 64: 32-41. doi: 10.1016/j.watres.2014.06.035
[16] CUI L H, OUYANG Y, LOU Q, et al. Removal of nutrients from wastewater with Canna india L. under different vertical-flow constructed wetland conditions[J]. Ecological Engineering, 2010, 36(8): 1083-1088. doi: 10.1016/j.ecoleng.2010.04.026
[17] YANG Y Q, ZHAN X, WU S J, et al. Effect of hydraulic loading rate on pollutant removal efficiency in subsurface in infiltration system under intermittent operation and micropower aeration[J]. Bioresource Technology, 2016, 205: 174-182. doi: 10.1016/j.biortech.2015.12.088
[18] 鲁如坤.土壤农业化学分析方法[M]. 2版.北京:中国农业科技出版社, 1992: 309-310.
[19] KIZITO S, LV T, WU S B, et al. Treatment of anaerobic digested effluent in biochar-packed vertical flow constructed wetland columns: Role of media and tidal operation[J]. Science of the Total Environment, 2017, 592: 197-205. doi: 10.1016/j.scitotenv.2017.03.125
[20] 干方群, 周健民, 王火焰, 等.黏土矿物对磷的吸附性能及其在水体净化中的应用[J].农业环境科学学报, 2007, 26(增刊): 447-453.
[21] 杨兴胜.高岭石和酸化高岭石对F、NH3-N、Cr吸附性能探讨[J].中国农学通报, 2014, 30(3): 168-172.
[22] WU H M, ZHANG J, GUO W S, et al. Secondary effluent purification by a large-scale multi-stage surface-flow constructed wetland: A case study in northern China[J]. Bioresource Technology, 2018, 249: 1092-1096. doi: 10.1016/j.biortech.2017.10.099
[23] 祝志超, 缪恒锋, 崔健, 等.组合人工湿地系统对污水处理厂二级出水的深度处理效果[J].环境科学研究, 2018, 31(12): 2028-2036.
[24] 廖波, 林武.强化型垂直流人工湿地用于污水处理厂尾水深度处理[J].中国给水排水, 2013, 29(16): 74-77.
[25] 刘昌伟, 薛晨, 杨永哲, 等.新型潮汐流人工湿地深度处理生活污水的研究[J].中国给水排水, 2012, 28(11): 10-13. doi: 10.3969/j.issn.1000-4602.2012.11.003
[26] WEI C J, WU W Z. Performance of single-pass and by-pass multi-step multi-soil-layering systems for low-(C/N)-ratio polluted river water treatment[J]. Chemosphere, 2018, 206: 579-586. doi: 10.1016/j.chemosphere.2018.05.035
[27] ZHU H, YAN B X, XU Y Y, et al. Removal of nitrogen and COD in horizontal subsurface flow constructed wetlands under different influent C/N ratios[J]. Ecological Engineering, 2014, 63: 58-63. doi: 10.1016/j.ecoleng.2013.12.018
[28] 刘庚, 李胜男, 黄磊, 等. COD/N对潜流人工湿地脱氮效能及N2O排放的影响[J].环境工程学报, 2016, 10(12): 6907-6913. doi: 10.12030/j.cjee.201507170
[29] VYMAZAL J. Removal of nutrients in various types of constructed wetlands[J]. Sciences of the Total Environment, 2007, 380(1/2/3): 48-65.
[30] LIMA M X, CARVALHO K Q, PASSIG F H, et al. Performance of different substrates in constructed wetlands planted with E. crassipes treating low-strength sewage under subtropical conditions[J]. Sciences of the Total Environment, 2018, 630: 1365-1373. doi: 10.1016/j.scitotenv.2018.02.342
[31] 尉中伟, 王晓昌, 郑于聪, 等.水平潜流人工湿地脱氮功效中植物的作用[J].环境工程学报, 2015, 9(2): 595-602.
[32] LIU F F, FAN J, DU J, et al. Intensified nitrogen transformation in intermittently aerated constructed wetlands: Removal pathways and microbial response mechanism[J]. Sciences of the Total Environment, 2019, 650: 2880-2887. doi: 10.1016/j.scitotenv.2018.10.037
[33] WANG J X, TAI Y P, MAN Y, et al. Capacity of various single-stage constructed wetlands to treat domestic sewage under optimal temperature in Guangzhou City, South China[J]. Ecological Engineering, 2018, 115: 35-44. doi: 10.1016/j.ecoleng.2018.02.008
[34] 李洁, 吕锡武, 谢静.水培番茄滤床-折流板式潜流湿地深度净化农村生活污水[J].环境工程学报, 2016, 10(8): 4018-4024.