[1] QIAO Y, LI C M , BAO S J, et al. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells[J]. Journal of Power Sources, 2007, 170(1): 79-84.
[2] NAM Y, KIM H W, LIM K H, et al. Variation of power generation at different buffer types and conductivities in single chamber microbial fuel cells[J]. Biosensors & Bioelectronics, 2010, 25(5): 1155-1159.
[3] YE Y, ZHU X, LOGAN B E. Effect of buffer charge on performance of air-cathodes used in microbial fuel cells[J]. Electrochimica Acta, 2016, 194: 441-447.
[4] TANG X, LI H, DU Z. A phosphorus-free anolyte to enhance coulombic efficiency of microbial fuel cells[J]. Journal of Power Sources, 2014, 268: 14-18.
[5] YOU J, REN N Q, ZHAO Q L, et al. Improving phosphate buffer-free cathode performance of microbial fuel cell based on biological nitrification[J]. Biosensors & Bioelectronics, 2009, 24(12): 3698-3701.
[6] PICIOREANU C, LOOSDRECHT M C, CURTIS T P, et al. Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance[J]. Bioelectrochemistry, 2010, 78(1): 8-24.
[7] GE Z, ZHANG F, GRIMAUD J, et al. Long-term investigation of microbial fuel cells treating primary sludge or digested sludge[J]. Bioresource Technology, 2013, 136: 509-514.
[8] JUNG S, MRNCH M M, REGAN J M. Impedance characteristics and polarization behavior of a microbial fuel cell in response to short-term changes in medium pH[J]. Environmental Science & Technology, 2011, 45(20): 9069-9074.
[9] FRANKS A E, NEVIN K P, JIA H, et al. Novel strategy for three-dimensional real-time imaging of microbial fuel cell communities: monitoring the inhibitory effects of proton accumulation within the anode biofilm[J]. Energy & Environmental Science, 2009, 2(1): 113-119.
[10] LI W, SUN J, HU Y, et al. Simultaneous pH self-neutralization and bioelectricity generation in a dual bioelectrode microbial fuel cell under periodic reversion of polarity[J]. Journal of Power Sources, 2014, 268: 287-293.
[11] YANG Y, QIN M, YANG X, et al. Enhancing hydrogen production in microbial electrolysis cells by in situ hydrogen oxidation for self-buffering pH through periodic polarity reversal[J]. Journal of Power Sources, 2017, 347: 21-28.
[12] REN Y, CHEN J, SHI Y, et al. Anolyte recycling enhanced bioelectricity generation of the buffer-free single-chamber air-cathode microbial fuel cell[J]. Bioresource Technology, 2017, 244: 1183-1187.
[13] FAN Y Z, HU H Q, LIU H. Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms[J]. Environmental Science & Technology, 2007, 41: 8154-8158.
[14] DONG H, YU H B, WANG X, et al. A novel structure of scalable air cathode without nafion and Pt by rolling activated carbon and PTFE as catalyst layer in microbial fuel cells[J]. Water Research, 2012, 46: 5777-5787.
[15] 牟姝君, 李秀芬, 任月萍, 等. 铜离子对双室微生物燃料电池电能输出的影响研究[J]. 环境科学, 2014, 35(7): 2791-2797.
[16] RABAEY K, BOON N, SICILIANO S D, et al. Biofuel cells select for microbial consortia that self-mediate electron transfer[J]. Applied and Environmental Microbiology, 2004, 70(9): 5373-5382.
[17] JADHAV D A, GHADGE A N, GHANGERKAR M M. Enhancing the power generation in microbial fuel cells with effective utilization of goethite recovered from mining mud as anodic catalyst[J]. Bioresource Technology, 2015, 191: 110-116.
[18] RICHTER H, NEVIN K P, JIA H, et al. Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer[J]. Energy & Environmental Science, 2009, 2(5): 506-516.
[19] URKI T, DIDONATO L N, LOVLEY D R. Toward establishing minimum requirements for extracellular electron transfer in Geobacter sulfurreducens[J]. FEMS Microbiology Letters, 2017, 364(9): 1-7.
[20] 冯玉杰, 王鑫, 李贺, 等. 乙酸钠为基质的微生物燃料电池产电过程[J]. 哈尔滨工业大学学报, 2007, 39(12): 1890-1896.