[1] 王旭, 王永刚, 孙长虹, 等. 城市黑臭水体形成机理与评价方法研究进展[J]. 应用生态学报, 2016, 27(4): 1331-1340.
[2] 国务院. 水污染防治行动计划[EB/OL]. (2017-09-28)[2019-03-19]. http: //www. gov. cn/zhengce/content/2015-04/16/content_9613. htm.
[3] KNOP E. Design studies for the emscher mouth treatment plant[J]. Journal of Water Pollution Control Federation, 1966, 38(7): 1194-1207.
[4] 李相力, 张鹏程, 于洪存. 沈阳市卫工河黑臭现象分析[J]. 环境保护科学, 2003, 29(5): 27-28.
[5] LAZARO T R. Urban hydrology: A multidisciplinary perspective[J]. Geographical Journal, 1979, 147(3): 364-365.
[6] 住房城乡建设部. 城市黑臭水体整治工作指南[EB/OL]. (2015-08-28)[2019-03-22]. https://max.book118.com/html/2017/1114/140061925.shtm.
[7] 李伟杰, 汪永辉. 铁离子在水体中价态的转化及其与河道黑臭的关系[J]. 净水技术, 2007, 26(2): 35-37.
[8] 李真, 黄民生, 何岩, 等. 铁和硫的形态转化与水体黑臭的关系[J]. 环境科学与技术, 2010, 33(S1): 1-3.
[9] KUTOVAYA O A, WATSON S B. Development and application of a molecular assay to detect and monitor geosmin-producing cyanobacteria and actinomycetes in the Great Lakes[J]. Journal of Great Lakes Research, 2014, 40(2): 404-414.
[10] SUGIURA N, UTSUMI M, WEI B, et al. Assessment for the complicated occurrence of nuisance odours from phytoplankton and environmental factors in a eutrophic lake[J]. Lakes & Reservoirs Research & Management, 2010, 9(3/4): 195-201.
[11] 俞欣, 陈天安. 河道黑臭污染简易评价方法研究[J]. 环境科学与管理, 2015, 40(3): 176-179.
[12] 赵越, 姚瑞华, 徐敏, 等. 我国城市黑臭水体治理实践及思路探讨[J]. 环境保护, 2015, 43(13): 27-29.
[13] 崔伟, 张勇, 黄民生. 复合垂直流人工湿地脲酶和磷酸酶活性与黑臭河水净化效果[J]. 安徽农业科学, 2011, 39(13): 8016-8018.
[14] 申茜, 朱利, 曹红业. 城市黑臭水体遥感监测与筛查研究进展[J]. 应用生态学报, 2017, 28(10): 3433-3439.
[15] 丁潇蕾, 李云梅, 吕恒, 等. 城市黑臭水体的吸收特性分析[J]. 环境科学, 2018, 39(10): 129-139.
[16] 温爽, 王桥, 李云梅, 等. 基于高分影像的城市黑臭水体遥感识别: 以南京为例[J]. 环境科学, 2018, 39(1): 57-67.
[17] 姚月, 申茜, 朱利, 等. 高分二号的沈阳市黑臭水体遥感识别[J]. 遥感学报, 2017, 23(2): 1-12.
[18] 纪刚. 基于遥感的黑臭水体识别方法研究及应用[D]. 兰州: 兰州交通大学, 2017.
[19] 曹红业. 中国典型城市黑臭水体光学特性分析及遥感识别模型研究[D]. 成都: 西南交通大学, 2017.
[20] 胡淼, 张宁, 王罗娟, 等. 多源数据对黑臭水体整治的遥感监测[J]. 环境与发展, 2017, 29(9): 159-161.
[21] 李佳琦, 戴华阳, 李家国, 等. 城区重度污染水体遥感识别研究[J]. 测绘通报, 2018, 1(5): 54-58.
[22] 靳海霞, 潘健. 基于高分二号卫星融合数据的城镇黑臭水体遥感监测研究[J]. 国土资源科技管理, 2017, 34(4): 107-117.
[23] DUAN H, MA R, LOISELLE S A, et al. Optical characterization of black water blooms in eutrophic waters[J]. Science of the Total Environment, 2014, 482-483(3): 174-183.
[24] KUTSER T, PAAVEL B, VERPOORTER C, et al. Remote sensing of black lakes and using 810 nm reflectance peak for retrieving water quality parameters of optically complex waters[J]. Remote Sensing, 2016, 8(6): 497-498.
[25] ZHANG Y, SHI K, LIU J, et al. Meteorological and hydrological conditions driving the formation and disappearance of black blooms, an ecological disaster phenomena of eutrophication and algal blooms[J]. Science of the Total Environment, 2016, 569-570(1): 1517-1529.
[26] CHEN J, XIE P, MA Z, et al. A systematic study on spatial and seasonal patterns of eight taste and odor compounds with relation to various biotic and abiotic parameters in Gonghu Bay of Lake Taihu, China[J]. Science of the Total Environment, 2010, 409(2): 314-325.
[27] 卢信, 冯紫艳, 商景阁, 等. 不同有机基质诱发的水体黑臭及主要致臭物(VOSCs)产生机制研究[J]. 环境科学, 2012, 33(9): 3152-3159.
[28] PARINET J, RODRIGUEZ M J, SERODES J. Influence of water quality on the presence of off-flavour compounds (geosmin and 2-methylisoborneol)[J]. Water Research, 2010, 44(20): 5847-5856.
[29] BRIUCAUD A, MOREL A, PRIEUR L. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains[J]. Limnology and Oceanography, 1981, 26(1): 43-53.
[30] ZHOU C, CHEN S B, ZHANG Y Z, et al. Evaluating metal effects on the reflectance spectra of plant leaves during different seasons in post-mining areas, China[J]. Remote Sensing, 2018, 10(8): 1211-1212.
[31] ZHOU C, CHEN S B, ZHAO J H, et al. Detection of alone stress and combined stress by Cu and Ni in wheat using visible to near-infrared spectroscopy[C]//Institute of Electrical and Electronics Engineers(IEEE). International Conference on Agro-Geoinformatics, Hangzhou, 2018: 1-6.
[32] 范宪创, 陈圣波, 周超, 等. 基于MODIS数据的海洋叶绿素反演算法研究[J]. 科学技术与工程, 2017, 17(10): 74-80.