[1] MRAD R, COUSIN R, POUPIN C, et al. Propene oxidation and NO reduction over MgCu-Al(Fe) mixed oxides derived from hydrotalcite-like compounds[J]. Catalysis Today, 2015, 257: 98-103. doi: 10.1016/j.cattod.2015.02.020
[2] YUAN D L, LI X Y, ZHAO Q D, et al. A novel CuTi-containing catalyst derived from hydrotalcite-like compounds for selective catalytic reduction of NO with C3H6 under lean-burn conditions[J]. Journal of Catalysis, 2014, 309: 268-279. doi: 10.1016/j.jcat.2013.09.010
[3] AZIS M M, HÄRELIND H, CREASER D. On the role of H2 to modify surface NOx species over Ag-Al2O3 as lean NOx reduction catalyst: TPD and DRIFTS studies[J]. Catalysis Science & Technology, 2014, 5: 296-309.
[4] 刘欣, 苏亚欣, 董士林, 等. Co/Fe/Al2O3/cordierite催化C3H6选择性还原NO的实验研究[J]. 燃料化学学报, 2018, 46(6): 743-753. doi: 10.3969/j.issn.0253-2409.2018.06.013
[5] KIM Y J, KWON H J, NAM I S, et al. High deNOx performance of Mn/TiO2 catalyst by NH3[J]. Catalysis Today, 2010, 151(3/4): 244-250.
[6] PUTLURU S S R, MOSSIN S, RIISAGER A, et al. Heteropoly acid promoted Cu and Fe catalysts for the selective catalytic reduction of NO with ammonia[J]. Catalysis Today, 2011, 176(1): 292-297. doi: 10.1016/j.cattod.2010.11.087
[7] YAO S H, CHEN S, SHI Z L. Preparation and photocatalytic activity of Ce, H3PW12O40 co-doped TiO2 hollow fibers[J]. Chinese Journal of Chemical Physics, 2014, 27: 343-349. doi: 10.1063/1674-0068/27/03/343-349
[8] LIU J, LI X Y, ZHAO Q D, et al. Combined spectroscopic and theoretical approach to sulfur-poisoning on Cu-supported Ti-Zr mixed oxide catalyst in the selective catalytic reduction of NOx[J]. ACS Catalysis, 2014, 4(8): 2426-2436. doi: 10.1021/cs5005739
[9] 王淑勤, 武金锦, 杜志辉. Co-Ce共掺杂对TiO2催化剂室温可见光催化脱硝性能的影响[J]. 燃料化学学报, 2019, 47(3): 361-369.
[10] JIN R B, LIU Y, WU Z B, et al. Low-temperature selective catalytic reduction of NO with NH3 over Mn-Ce oxides supported on TiO2 and Al2O3: A comparative study[J]. Chemosphere, 2010, 78(9): 1160-1166. doi: 10.1016/j.chemosphere.2009.11.049
[11] 宋忠贤. 固体酸改性CeO2催化剂的制备及其NH3-SCR机理研究[D]. 昆明: 昆明理工大学, 2017.
[12] WENG X L, DAI X X, ZENG Q S, et al. DRIFT studies on promotion mechanism of H3PW12O40 in selective catalytic reduction of NO with NH3[J]. Journal of Colloid and Interface Science, 2016, 461: 9-14. doi: 10.1016/j.jcis.2015.09.004
[13] 宋淑美, 王睿. 具有低温活性的高效脱硝催化体系研究进展[J]. 现代化工, 2007, 27(s1): 108-112.
[14] GÓMEZ-GARCÍA M A, PITCHON V, KIENNEMANN A, et al. Sorption-desorption of NOx from a lean gas mixture on H3PW12O40·6H2O supported on carbon nanotubes[J]. Topics in Catalysis, 2004, 30-31(1/2/3/4): 229-233.
[15] PALACIO M, VILLABRILLE P I, ROMANELLI G P, et al. Ecofriendly liquid phase oxidation with hydrogen peroxide of 2,6-dimethylphenol to 2,6-dimethyl-1,4-benzoquinone catalyzed by TiO2-CeO2 mixed xerogels[J]. Applied Catalysis A: General, 2009, 359(1/2): 62-68.
[16] XUE W L, ZHANG G W, XU X F, et al. Preparation of titania nanotubes doped with cerium and their photocatalytic activity for glyphosate[J]. Chemical Engineering Journal, 2011, 167(1): 397-402. doi: 10.1016/j.cej.2011.01.007
[17] WANG Y J, CUI Y X, SUO Y H, et al. Influences of cerium on structure and catalytic performance of n-heptane hydroisomerization of Ni-HPW/MCM-48[J]. Journal of Rare Earths, 2015, 33(1): 46-55. doi: 10.1016/S1002-0721(14)60382-3
[18] MICEK-ILNICKA A, BIELAŃSKA E, LITYŃSKA-DOBRZYŃSKA L, et al. Carbon nanotubes, silica and titania supported heteropolyacid H3PW12O40 as the catalyst for ethanol conversion[J]. Applied Catalysis A: General, 2012, 421-422: 91-98. doi: 10.1016/j.apcata.2012.02.001
[19] REN Z Y, TENG Y F, ZHAO L Y, et al. Keggin-tungstophosphoric acid decorated Fe2O3 nanoring as a new catalyst for selective catalytic reduction of NOx with ammonia[J]. Catalysis Today, 2017, 297: 36-45. doi: 10.1016/j.cattod.2017.06.036
[20] CHANSAI S, BURCH R, HARDACRE C, et al. The use of short time-on-stream in situ spectroscopic transient kinetic isotope techniques to investigate the mechanism of hydrocarbon selective catalytic reduction (HC-SCR) of NOx at low temperatures[J]. Journal of Catalysis, 2016, 281(1): 98-105.
[21] GENG Y, XIONG S C, LI B, et al. H3PW12O40 grafted on CeO2: A high-performance catalyst for the selective catalytic reduction of NOx with NH3[J]. Industrial & Engineering Chemistry Research, 2018, 57(3): 856-866.
[22] GUNNARSSON F, PIHL J A, TOOPS T J, et al. Lean NOx reduction over Ag/alumina catalysts via ethanol-SCR using ethanol/gasoline blends[J]. Applied Catalysis B: Environmental, 2017, 202: 42-50. doi: 10.1016/j.apcatb.2016.09.009
[23] GUO R T, LI M Y, SUN P, et al. Mechanistic investigation of the promotion effect of Bi modification on the NH3-SCR performance of Ce/TiO2 catalyst[J]. Journal of Physical Chemistry C, 2017, 121(49): 27535-27545. doi: 10.1021/acs.jpcc.7b10342
[24] JIANG H X, WANG Q Y, WANG H Q, et al. MOF-74 as an efficient catalyst for the low-temperature selective catalytic reduction of NOx with NH3[J]. ACS Applied Materials & Interfaces, 2016, 8(40): 26817-26826.
[25] ZHA K W, CAI S X, HU H, et al. In situ DRIFTs investigation of promotional effects of tungsten on MnOx-CeO2/meso-TiO2 catalysts for NOx reduction[J]. Journal of Physical Chemistry C, 2017, 121(45): 25243-25254. doi: 10.1021/acs.jpcc.7b08600
[26] ZHANG Q L, FAN J, NING P, et al. In situ DRIFTS investigation of NH3-SCR reaction over CeO2/zirconium phosphate catalyst[J]. Applied Surface Science, 2018, 435: 1037-1045. doi: 10.1016/j.apsusc.2017.11.180
[27] HADJIIVANOV K. Identification of neutral and charged NxOy surface species by IR spectroscopy[J]. Catalysis Reviews: Science and Engineering, 2000, 42(1/2): 71-144.
[28] KRISTIANSEN T, MATHISEN K. On the promoting effect of water during NOx removal over single-site copper in hydrophobic silica APD-aerogels[J]. Journal of Physical Chemistry C, 2014, 118(5): 2439-2453. doi: 10.1021/jp406610v
[29] SHIMIZU K, SATSUMA A. Selective catalytic reduction of NO over supported silver catalysts-practical and mechanistic aspects[J]. Physical Chemistry Chemical Physics, 2006, 8(23): 2677-2695. doi: 10.1039/B601794K
[30] SOBCZAK I, MUSIALSKA K, PAWLOWSKI H, et al. NO and C3H6 adsorption and coadsorption in oxygen excess: A comparative study of different type zeolites modified with gold[J]. Catalysis Today, 2011, 176(1): 393-398. doi: 10.1016/j.cattod.2010.11.028
[31] XU G Y, YU Y B, HE H. Silver valence state determines the water tolerance of Ag/Al2O3 for the H2-C3H6-SCR of NOx[J]. Journal of Physical Chemistry C, 2018, 122(1): 670-680. doi: 10.1021/acs.jpcc.7b10860
[32] YU Y B, HE H, ZHANG X L, et al. A common feature of H2-assisted HC-SCR over Ag/Al2O3[J]. Catalysis Science & Technology, 2014, 4(5): 1239-1245.
[33] KAMEOKA S, KITA K, TANAKA S I, et al. Enhancement of C2H6 oxidation by O2 in the presence of N2O over Fe ion-exchanged BEA zeolite catalyst[J]. Catalysis Letters, 2002, 79(1/2/3/4): 63-67.
[34] HAMADA S, HIBARINO S, IKEUE K, et al. Preparation of supported Pt-M catalysts (M=Mo and W) from anion-exchanged hydrotalcites and their catalytic activity for low temperature NO-H2-O2 reaction[J]. Applied Catalysis B: Environmental, 2007, 74(3/4): 197-202.
[35] LI Y H, DENG J L, SONG W Y, et al. Nature of Cu species in Cu-SAPO-18 catalyst for NH3-SCR: combination of experiments and DFT calculations[J]. Journal of Physical Chemistry C, 2016, 120(27): 14669-14680. doi: 10.1021/acs.jpcc.6b03464