[1] Science/AAAS Custom Publishing Office and Shanghai Jiao Tong University. 125 questions: Exploration and discovery [EB/OL]. [2021-05-14].https://www.science.org/content/resource/125-questions-exploration-and-discovery.
[2] PEHRSSON E C, TSUKAYAMA P, PATEL S, et al. Interconnected microbiomes and resistomes in low-income human habitats[J]. Nature, 2016, 533(7602): 212-216. doi: 10.1038/nature17672
[3] O'NEILL J, Tackling drug-resistant infections globally: final report and recommendations [R]. 2016. O'Neill J.
[4] PRUDEN A, PEI R, STORTEBOOM H, et al. Antibiotic resistance genes as emerging contaminants: studies in northern Colorado[J]. Environmental Science & Technology, 2006, 40(23): 7445-7450.
[5] SANDERSON H, FRICKER C, BROWN R S, et al. Antibiotic resistance genes as an emerging environmental contaminant[J]. Environmental Reviews, 2016, 24(2): 205-218. doi: 10.1139/er-2015-0069
[6] UNEP, Frontiers 2017: Emerging Issues of Environmental Concern [R]. Kenya: United Nations Environment Programme, 2017.
[7] 王荣昌, 王超颖, 曾旭. 污水处理过程中抗生素抗性基因的检测及其水平转移机制的研究进展[J]. 环境化学, 2017, 36(12): 2567-2573. doi: 10.7524/j.issn.0254-6108.2017042605
[8] ULUSEKER C, KASTER K M, THORSEN K, et al. A review on occurrence and spread of antibiotic resistance in wastewaters and in wastewater treatment plants: mechanisms and perspectives[J]. Frontiers in Microbiology, 2021, 12: 717809. doi: 10.3389/fmicb.2021.717809
[9] 李超, 鲁建江, 童延斌, 等. 喹诺酮抗性基因在城市污水处理系统中的分布及去除[J]. 环境工程学报, 2016, 10(3): 1177-1183. doi: 10.12030/j.cjee.20160328
[10] MILLER J H, NOVAK J T, KNOCKE W R, et al. Effect of silver nanoparticles and antibiotics on antibiotic resistance genes in anaerobic digestion[J]. Water Environment Research, 2013, 85(5): 411-421. doi: 10.2175/106143012X13373575831394
[11] MA Y, METCH J W, YANG Y, et al. Shift in antibiotic resistance gene profiles associated with nanosilver during wastewater treatment [J]. FEMS Microbiology Ecology, 2016, 92(3).
[12] FU J J, HUANG D Q, LU Z Y, et al. Comparison of the dynamic responses of different anammox granules to copper nanoparticle stress: Antibiotic exposure history made a difference[J]. Bioresource Technology, 2021, 333: 125186. doi: 10.1016/j.biortech.2021.125186
[13] HUANG H, ZHENG X, YANG S, et al. More than sulfidation: Roles of biogenic sulfide in attenuating the impacts of CuO nanoparticle on antibiotic resistance genes during sludge anaerobic digestion[J]. Water Research, 2019, 158: 1-10. doi: 10.1016/j.watres.2019.04.019
[14] ZHANG Y, WANG L, XIONG Z, et al. Removal of antibiotic resistance genes from post-treated swine wastewater by mFe/nCu system[J]. Chemical Engineering Journal, 2020, 400: 125953. doi: 10.1016/j.cej.2020.125953
[15] ZHANG Y, XU R, XIANG Y, et al. Addition of nanoparticles increases the abundance of mobile genetic elements and changes microbial community in the sludge anaerobic digestion system[J]. Journal of Hazardous Materials, 2021, 405: 124206. doi: 10.1016/j.jhazmat.2020.124206
[16] LI J, GUO N, ZHAO S, et al. Mechanisms of metabolic performance enhancement and ARGs attenuation during nZVI-assisted anaerobic chloramphenicol wastewater treatment[J]. Journal of Hazardous Materials, 2021, 419: 126508. doi: 10.1016/j.jhazmat.2021.126508
[17] ZHANG Y, YANG Z, XIANG Y, et al. Evolutions of antibiotic resistance genes (ARGs), class 1 integron-integrase (intI1) and potential hosts of ARGs during sludge anaerobic digestion with the iron nanoparticles addition[J]. Science of the Total Environment, 2020, 724: 138248. doi: 10.1016/j.scitotenv.2020.138248
[18] ZAREI-BAYGI A, SMITH A L. Intracellular versus extracellular antibiotic resistance genes in the environment: Prevalence, horizontal transfer, and mitigation strategies[J]. Bioresource Technology, 2021, 319: 124181. doi: 10.1016/j.biortech.2020.124181
[19] ZHOU S, ZHU Y, YAN Y, et al. Deciphering extracellular antibiotic resistance genes (eARGs) in activated sludge by metagenome[J]. Water Research, 2019, 161: 610-620. doi: 10.1016/j.watres.2019.06.048
[20] MAO D, LUO Y, MATHIEU J, et al. Persistence of extracellular DNA in river sediment facilitates antibiotic resistance gene propagation[J]. Environmental Science & Technology, 2014, 48(1): 71-78.
[21] DONG P, WANG H, FANG T, et al. Assessment of extracellular antibiotic resistance genes (eARGs) in typical environmental samples and the transforming ability of eARG[J]. Environment International, 2019, 125: 90-96. doi: 10.1016/j.envint.2019.01.050
[22] DOMINIAK D M, NIELSEN J L, NIELSEN P H. Extracellular DNA is abundant and important for microcolony strength in mixed microbial biofilms[J]. Environmental Microbiology, 2011, 13(3): 710-721. doi: 10.1111/j.1462-2920.2010.02375.x
[23] ZHENG X, WU R, CHEN Y. Effects of ZnO nanoparticles on wastewater biological nitrogen and phosphorus removal[J]. Environmental Science & Technology, 2011, 45(7): 2826-2832.
[24] ZHOU L, ZHUANG W, WANG X, et al. Potential effects of loading nano zero valent iron discharged on membrane fouling in an anoxic/oxic membrane bioreactor[J]. Water Research, 2017, 111: 140-146. doi: 10.1016/j.watres.2017.01.007
[25] CHEN P J, TAN S W, WU W L. Stabilization or oxidation of nanoscale zerovalent iron at environmentally relevant exposure changes bioavailability and toxicity in medaka fish[J]. Environmental Science & Technology, 2012, 46(15): 8431-8439.
[26] WIEGAND I, HILPERT K, HANCOCK R E W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances[J]. Nature Protocols, 2008, 3(2): 163-175. doi: 10.1038/nprot.2007.521
[27] PATEL J B, COCKERILL F, BRADFORD P, et al. Clinical and laboratory standards institute[J]. Performance standards for Antimicrobial Susceptibility Testing, 2017: 42-45.
[28] PALMGREN R, NIELSEN P H. Accumulation of DNA in the exopolymeric matrix of activated sludge and bacterial cultures[J]. Water Science and Technology, 1996, 34(5-6): 233-240. doi: 10.2166/wst.1996.0555
[29] ZHOU J, BRUNS M A, TIEDJE J M. DNA recovery from soils of diverse composition[J]. Applied and Environmental Microbiology, 1996, 62(2): 316-322. doi: 10.1128/aem.62.2.316-322.1996
[30] CORINALDESI C, DANOVARO R, DELL'ANNO A. Simultaneous recovery of extracellular and intracellular DNA suitable for molecular studies from marine sediments[J]. Applied and Environmental Microbiology, 2005, 71(1): 46-50. doi: 10.1128/AEM.71.1.46-50.2005
[31] 萨姆布鲁克, 分子克隆实验指南: 下册 [M]. 第三版. 北京: 科学出版社, 2002.
[32] ZHANG Y, NIU Z, ZHANG Y, et al. Occurrence of intracellular and extracellular antibiotic resistance genes in coastal areas of Bohai Bay (China) and the factors affecting them[J]. Environmental Pollution, 2018, 236: 126-136. doi: 10.1016/j.envpol.2018.01.033
[33] GREEN M R, SAMBROOK J. Precipitation of DNA with ethanol[J]. Cold Spring Harbor Protocols, 2016, 2016(12): pdb.prot093377. doi: 10.1101/pdb.prot093377
[34] PEI R, KIM S C, CARLSON K H, et al. Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG)[J]. Water research, 2006, 40(12): 2427-2435. doi: 10.1016/j.watres.2006.04.017
[35] LUO Y I, MAO D, RYSZ M, et al. Trends in antibiotic resistance genes occurrence in the Haihe River, China[J]. Environmental Science & Technology, 2010, 44(19): 7220-7225.
[36] FIERER N, JACKSON J A, VILGALYS R, et al. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays[J]. Applied and environmental microbiology, 2005, 71(7): 4117-4120. doi: 10.1128/AEM.71.7.4117-4120.2005
[37] SHAHBAZI S, SHIVAEE A, NASIRI M, et al. Zinc oxide nanoparticles impact the expression of the genes involved in toxin-antitoxin systems in multidrug-resistant Acinetobacter baumannii[J]. Journal of Basic Microbiology, 2022, 11: 1.
[38] ABDELGHAFAR A, YOUSEF N, ASKOURA M. Zinc oxide nanoparticles reduce biofilm formation, synergize antibiotics action and attenuate Staphylococcus aureus virulence in host; an important message to clinicians[J]. BMC Microbiology, 2022, 22(1): 1-17. doi: 10.1186/s12866-021-02409-6
[39] QIU X, ZHOU G, WANG H. Nanoscale zero-valent iron inhibits the horizontal gene transfer of antibiotic resistance genes in chicken manure compost[J]. Journal of Hazardous Materials, 2022, 422: 126883. doi: 10.1016/j.jhazmat.2021.126883
[40] 陆贤, 郭美婷, 张伟贤. 纳米零价铁对耐四环素菌耐药特性的影响[J]. 中国环境科学, 2017, 37(1): 381-385. doi: 10.3969/j.issn.1000-6923.2017.01.047
[41] WANG P, CHEN X, LIANG X, et al. Effects of nanoscale zero-valent iron on the performance and the fate of antibiotic resistance genes during thermophilic and mesophilic anaerobic digestion of food waste[J]. Bioresource Technology, 2019, 293: 122092. doi: 10.1016/j.biortech.2019.122092
[42] WANG Q, GU J, WANG X, et al. Effects of nano-zerovalent iron on antibiotic resistance genes and mobile genetic elements during swine manure composting[J]. Environmental Pollution, 2020, 258: 113654. doi: 10.1016/j.envpol.2019.113654
[43] HUANG H, CHEN Y, YANG S, et al. CuO and ZnO nanoparticles drive the propagation of antibiotic resistance genes during sludge anaerobic digestion: possible role of stimulated signal transduction[J]. Environmental Science:Nano, 2019, 6(2): 528-539. doi: 10.1039/C8EN00370J
[44] 陈芋如. 纳米颗粒物对河口水环境中微生物群落及抗生素抗性基因的影响 [D]. 上海: 华东师范大学, 2020.
[45] CHEN Y, GUO X, FENG J, et al. Impact of ZnO nanoparticles on the antibiotic resistance genes (ARGs) in estuarine water: ARG variations and their association with the microbial community[J]. Environmental Science:Nano, 2019, 6(8): 2405-2419. doi: 10.1039/C9EN00338J
[46] NG C, TAY M, TAN B, et al. Characterization of metagenomes in urban aquatic compartments reveals high prevalence of clinically relevant antibiotic resistance genes in wastewaters[J]. Frontiers in Microbiology, 2017, 8: 2200. doi: 10.3389/fmicb.2017.02200
[47] DAR D, SHAMIR M, MELLIN J R, et al. Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria[J]. Science, 2016, 352(6282): aad9822. doi: 10.1126/science.aad9822
[48] LIU Z, KLUMPER U, LIU Y, et al. Metagenomic and metatranscriptomic analyses reveal activity and hosts of antibiotic resistance genes in activated sludge[J]. Environment International, 2019, 129: 208-220. doi: 10.1016/j.envint.2019.05.036