[1] HOZALSKI R M, LAPARA T M, ZHAO X, et al. Flushing of stagnant premise water systems after the COVID-19 shutdown can reduce infection risk by Legionella and Mycobacterium spp[J]. Environmental Science & Technology, 2020, 54(24): 15914-15924.
[2] 张明露, 周贺, 关磊等. 饮用水配水系统中微生物研究方法的进展[J]. 环境与健康杂志, 2015, 32(5): 458-462. doi: 10.16241/j.cnki.1001-5914.2015.05.024
[3] TANG W, LI Q, CHEN L, et al. Biofilm community structures and opportunistic pathogen gene markers in drinking water mains and the role of pipe materials[J]. ACS ES& T. Water, 2021, 1(3): 630-640.
[4] 祝泽兵, 裴云燕, 单莉莉等. 供水管网生物膜中微生物种间相互作用及其影响因素综述[J/OL]. 环境工程: 1-15[2023-03-17]. http://kns.cnki.net/kcms/detail/11.2097.X.20221123.0807.002.html.
[5] SIDHU J P S, GUPTA V V S R, STANGE C, et al. Prevalence of antibiotic resistance and virulence genes in the biofilms from an aquifer recharged with stormwater[J]. Water Research, 2020, 185: 0043-1354.
[6] LIANG J, MAO G, YIN X, et al. Identification and quantification of bacterial genomes carrying antibiotic resistance genes and virulence factor genes for aquatic microbiological risk assessment[J]. Water Research, 2020, 168: 115160. doi: 10.1016/j.watres.2019.115160
[7] CIOFU O, MOSER C, JENSEN P Ø, et al. Tolerance and resistance of microbial biofilms[J]. Nature Reviews Microbiology, 2022, 20: 621-635. doi: 10.1038/s41579-022-00682-4
[8] 钟丹, 周子仪, 马文成等. 供水管网中抗生素抗性基因环境风险浅析[J]. 给水排水, 2020, 56(S2): 59-63. doi: 10.13789/j.cnki.wwe1964.2020.S2.010
[9] LI J, ZHAO L, FENG M, et al. Abiotic transformation and ecotoxicity change of sulfonamide antibiotics in environmental and water treatment processes: A critical review[J]. Water Research, 2021, 202: 117463. doi: 10.1016/j.watres.2021.117463
[10] YIN R, GUO W, REN N, et al. New insight into the substituents affecting the peroxydisulfate nonradical oxidation of sulfonamides in water[J]. Water Research, 2020, 171: 115374. doi: 10.1016/j.watres.2019.115374
[11] ZHANG B, QIN S, GUAN X, et al. Distribution of antibiotic resistance genes in Karst River and its ecological risk[J]. Water Research, 2021, 203: 117507. doi: 10.1016/j.watres.2021.117507
[12] ZHANG Z, WANG Y, CHEN B, et al. Xenobiotic pollution affects transcription of antibiotic resistance and virulence factors in aquatic microcosms[J]. Environmental Pollution, 2022, 306: 119396. doi: 10.1016/j.envpol.2022.119396
[13] LIN Q, LI L, FANG X, et al. Substrate complexity affects the prevalence and interconnections of antibiotic, metal and biocide resistance genes, integron-integrase genes, human pathogens and virulence factors in anaerobic digestion[J]. Journal of Hazardous Materials, 2022, 438: 129441. doi: 10.1016/j.jhazmat.2022.129441
[14] TANG T, CHEN Y, DU Y, et al. Effects of functional modules and bacterial clusters response on transmission performance of antibiotic resistance genes under antibiotic stress during anaerobic digestion of livestock wastewater[J]. Journal of Hazardous Materials, 2023, 441: 129870. doi: 10.1016/j.jhazmat.2022.129870
[15] WANG H, EDWARDS M. A, FALKINHAM J. O 3RD, et al. Probiotic approach to pathogen control in premise plumbing systems? A review[J]. Environmental Science & Technology, 2013, 47(18): 10117-10128.
[16] LU Z, SUN W, LI C, et al. Bioremoval of non-steroidal anti-inflammatory drugs by Pseudoxanthomonas sp. DIN-3 isolated from biological activated carbon pro`cess[J]. Water Research, 2019, 161: 459-472. doi: 10.1016/j.watres.2019.05.065
[17] 陈蕾. 污水中抗生素抗性菌及抗性基因的去除技术. 污水中抗生素抗性菌及抗性基因的去除技术[J]. 生态环境学报, 2018, 27(11): 2163-2169.
[18] LI B, QIU Y, ZHANG J, et al. Real-time study of rapid spread of antibiotic resistance plasmid in biofilm using microfluidics[J]. Environmental Science & Technology, 2018, 52(19): 11132-11141.
[19] FARHAT N, KIM L, MINETA K, et al. Seawater desalination based drinking water: Microbial characterization during distribution with and without residual chlorine[J]. Water Research, 2022, 210: 117975. doi: 10.1016/j.watres.2021.117975
[20] 付树森, 王艺, 王肖霖, 等. 氯和紫外消毒过程中胞外抗性基因的产生特征[J]. 中国环境科学, 2021, 41(10): 4756-4762. doi: 10.3969/j.issn.1000-6923.2021.10.032
[21] LU Z, JING Z, HUANG J, et al. Can we shape microbial communities to enhance biological activated carbon filter performance?[J]. Water Research, 2022, 212: 118104. doi: 10.1016/j.watres.2022.118104
[22] 李晓明, 王飞, 李建勇等. 饮用水中抗生素污染现状及降解技术研究进展[J]. 食品安全导刊, 2016, 144(21): 94-95. doi: 10.16043/j.cnki.cfs.2016.21.069
[23] 钟文辉, 曹一鸣, 肖露等. 自来水厂次氯酸钠消毒技术应用总结[J]. 清洗世界, 2022, 38(6): 93-96.
[24] 漆文光. 自来水厂采用次氯酸钠替代液氯消毒效果研究[J]. 供水技术, 2019, 13(3): 43-47.
[25] GOMEZ-SMITH C K, LAPARA T M, HOZALSKI R M. Sulfate reducing bacteria and Mycobacteria dominate the biofilm communities in a chloraminated drinking water distribution system[J]. Environmental Science & Technology, 2015, 49(14): 8432-8440.
[26] POTGIETER S, DAI Z, HAVENGA M, et al. Reproducible microbial community dynamics of two drinking water systems treating similar source waters[J]. ACS. ES& T. Water, 2021, 1(7): 1617-1627.
[27] THOM C, SMITH C J, MOORE G, et al. Microbiomes in drinking water treatment and distribution: A meta-analysis from source to tap[J]. Water Research, 2022, 212: 118106. doi: 10.1016/j.watres.2022.118106
[28] BORSETTO C, RAGUIDEAU S, TRAVIS E, et al. Impact of sulfamethoxazole on a riverine microbiome[J]. Water Research, 2021, 201: 117382. doi: 10.1016/j.watres.2021.117382
[29] CHEN J, YANG Y, LIU Y, et al. Bacterial community shift in response to a deep municipal tail wastewater treatment system[J]. Bioresource Technology, 2019, 281: 195-201. doi: 10.1016/j.biortech.2019.02.099
[30] 韩雪, 孙坚伟, 张力等. 紫外氯胺组合消毒供水系统中病毒微生物的分布特征[J]. 环境科学, 2021, 42(2): 860-866. doi: 10.13227/j.hjkx.202007039
[31] WANG Y H, WU Y H, LUO L W, et al. Metagenomics analysis of the key functional genes related to biofouling aggravation of reverse osmosis membranes after chlorine disinfection[J]. Journal of Hazardous Material, 2021, 410: 124602. doi: 10.1016/j.jhazmat.2020.124602
[32] EOH H, LIU R, LIM J, et al. Microbial characterization during distribution with and without residual chlorine[J]. Frontiers in Cellular and Infection Microbiology, 2022, 12: 958240. doi: 10.3389/fcimb.2022.958240
[33] WANG M, LIAN Y, WANG Y, et al. The role and mechanism of quorum sensing on environmental antimicrobial resistance[J]. Environmental Pollution, 2023, 322: 121238. doi: 10.1016/j.envpol.2023.121238
[34] ZOU S, ZHANG Q, ZHANG X, et al. Environmental factors and pollution stresses select bacterial populations in association with protists[J]. Frontiers in Marine Science, 2020, 7: 659. doi: 10.3389/fmars.2020.00659
[35] MORRISSEY K, IVESA L, DELVA S, et al. Impacts of environmental stress on resistance and resilience of algal-associated bacterial communities[J]. Ecology and Evolution, 2021, 11: 15004-15019. doi: 10.1002/ece3.8184
[36] SMITS S H J, SCHMITT L, BEIS K. Self-immunity to antibacterial peptides by ABC transporters[J]. FEBS Letters, 2020, 594: 3920-3942. doi: 10.1002/1873-3468.13953
[37] AHMED M S, LAUERSEN K J, IKRAM S, et al. Efflux transporters' engineering and their application in microbial production of heterologous metabolites[J]. ACS Synthetic Biology, 2021, 10,4: 646-669.
[38] GOMEZ-ALVAREZ, SIPONEN S, KAUPPINEN A, et al. A comparative analysis employing a gene- and genome-centric metagenomic approach reveals changes in composition, function, and activity in waterworks with different treatment processes and source water in Finland[J]. Water Research, 2023, 229: 119495. doi: 10.1016/j.watres.2022.119495