[1] 廖艺惠, 胡良, 卢隆, 等. 土壤砷污染修复技术研究进展[J]. 江西化工, 2023, 39(5): 7-11.
[2] 刘畅, 苑芷茜. PXRF法与AFS法测定土壤中砷的对比研究[J]. 现代农业科技, 2023, 17: 168-170.
[3] ZHANG L Q, HU J, LI C, et al. Synergistic mechanism of iron manganese supported biochar for arsenic remediation and enzyme activity in contaminated soil[J]. Journal of Environmental Management, 2023, 347: 119127. doi: 10.1016/j.jenvman.2023.119127
[4] LANGASCO I, BARRACU F, DEROMA M A, et al. Assessment and validation of ICP-MS and IC-ICP-MS methods for the determination of total, extracted and speciated arsenic. Application to samples from a soil-rice system at varying the irrigation method[J]. Journal of Environmental Management, 2022, 302: 114105. doi: 10.1016/j.jenvman.2021.114105
[5] WANG J G, LI Z H, ZHU Q, et al. Review on arsenic environment behaviors in aqueous solution and soil[J]. Chemosphere, 2023, 333: 138869. doi: 10.1016/j.chemosphere.2023.138869
[6] AZAM M S, SHAFIQUZZAMAN M, HAIDER H. Arsenic release dynamics of paddy field soil during groundwater irrigation and natural flooding[J]. Journal of Environmental Management, 2023, 343: 118204. doi: 10.1016/j.jenvman.2023.118204
[7] 常安刚, 朱振东, 崔婷婷, 等. 基于王水石墨密封消解体系-原子荧光法测定土壤和沉积物中汞、砷[J]. 环境工程学报, 2023, 17(11): 3738-3743.
[8] 李自强, 胡斯宪, 李小英, 等. 水浴浸提-氢化物发生-原子荧光光谱法同时测定土壤污染普查样品中砷和汞[J]. 理化检验(化学分册), 2018, 54(4): 480-483.
[9] 田翠, 金伟, 刘霜, 等. 水浴消解-原子荧光光度法测定土壤中的总砷和总汞[J]. 云南化工, 2023, 50(9): 72.
[10] 陈璐, 辜洋建, 王玉环, 等. 王水消解-电感耦合等离子体质谱法测定土壤和沉积物样品中的砷、镉、铅、铊、钨[J]. 化学分析计量, 2023, 32(7): 78-82.
[11] 兰冠宇, 李鹰, 俞晓峰, 等. 超级微波消解-电感耦合等离子体质谱(ICP-MS)法测定土壤中13种元素[J]. 中国无机分析化学, 2021, 11(5): 1-8.
[12] RABB S A, LE M D, YU L L. A novel approach to converting alkylated arsenic to arsenic acid for accurate ICP-OES determination of total arsenic in candidate speciation standards[J]. Microchemical Journal, 2018, 143: 133-139. doi: 10.1016/j.microc.2018.07.022
[13] JAMES K M B, RADIM V, JOHANNA R B, et al. Using an ensemble model coupled with portable X-ray fluorescence and visible near-infrared spectroscopy to explore the viability of mapping and estimating arsenic in an agricultural soil[J]. Science of the Total Environment, 2022, 818: 151805. doi: 10.1016/j.scitotenv.2021.151805
[14] CAPORALE A G, ADAMO P, CAPOZZI F, et al. Monitoring metal pollution in soils using portable-XRF and conventional laboratory-based techniques: Evaluation of the performance and limitations according to metal properties and sources[J]. Science of the Total Environment, 2018, 643: 516-526. doi: 10.1016/j.scitotenv.2018.06.178
[15] 吕胜男, 卢兵, 赵文志, 等. X射线荧光光谱法同时测定土壤和水系沉积物中23种主次痕量组分[J]. 理化检验-化学分册, 2023, 59(7): 764-770.
[16] 袁良经, 贾云海, 程大伟. X射线荧光光谱分析方法的检出限测量方法研究[J]. 光谱学与光谱分析, 2023, 43(2): 412-418.
[17] 马华, 李洪亮, 史健泽, 等. X射线荧光光谱法测定铝合金中锰的不确定度评定[J]. 有色金属加工, 2019, 48(5): 63-65.
[18] 夏祥, 龚仓, 陆海川, 等. X射线荧光光谱法测定地质样品20种元素的不确定度评定[J]. 辽宁化工, 2021, 50(5): 752-756.
[19] 中国合格评定国家认可委员会. CNAS-GL006: 2019《化学分析中不确定度的评估指南》[EB/OL]. [2019-04-09]. https://www.cnas.org.cn/rkgf/sysrk/rkzn/2019/04/896487.shtml.