[1] LI F, SUN H, HAO Z, et al. Perfluorinated compounds in Haihe River and Dagu drainage canal in Tianjin, China[J]. Chemosphere, 2011, 84(2): 265-271. doi: 10.1016/j.chemosphere.2011.03.060
[2] CHEN S, JIAO X, GAI N, et al. Perfluorinated compounds in soil, surface water, and groundwater from rural areas in eastern China[J]. Environmental Pollution, 2016, 211: 124-131. doi: 10.1016/j.envpol.2015.12.024
[3] YIN H, CHEN R, WANG H, et al. Co-occurrence of phthalate esters and perfluoroalkyl substances affected bacterial community and pathogenic bacteria growth in rural drinking water distribution systems[J]. Science of the Total Environment, 2023, 856: 158943. doi: 10.1016/j.scitotenv.2022.158943
[4] SUN R, WU M, TANG L, et al. Perfluorinated compounds in surface waters of Shanghai, China: Source analysis and risk assessment[J]. Ecotoxicology and Environmental Safety, 2018, 149: 88-95. doi: 10.1016/j.ecoenv.2017.11.012
[5] QI Y, HUO S, HU S, et al. Identification, characterization, and human health risk assessment of perfluorinated compounds in groundwater from a suburb of Tianjin, China[J]. Environmental Earth Sciences, 2016, 75: 1-12. doi: 10.1007/s12665-015-4873-x
[6] LI Y, LI J, ZHANG L, et al. Perfluoroalkyl acids in drinking water of China in 2017: distribution characteristics, influencing factors and potential risks[J]. Environment International, 2019, 123: 87-95. doi: 10.1016/j.envint.2018.11.036
[7] SUNDERLAND E M, HU X C, Dassuncao C, et al. A review of the pathways of human exposure to poly-and perfluoroalkyl substances (PFASs) and present understanding of health effects[J]. Journal of Exposure Science & Environmental Epidemiology, 2019, 29(2): 131-147.
[8] 孙博, 马军. 水中全氟化合物的活性炭吸附特性研究[J]. 给水排水, 2017, 53(2): 14-18. doi: 10.3969/j.issn.1002-8471.2017.02.003
[9] SON H, KIM T, YOOM H, et al. The adsorption selectivity of short and long per-and polyfluoroalkyl substances (PFASs) from surface water using powder-activated carbon[J]. Water, 2020, 12(11): 3287. doi: 10.3390/w12113287
[10] JAVED H, LYU C, SUN R, et al. Discerning the inefficacy of hydroxyl radicals during perfluorooctanoic acid degradation[J]. Chemosphere, 2020, 247: 125883. doi: 10.1016/j.chemosphere.2020.125883
[11] TANG H, XIANG Q, LEI M, et al. Efficient degradation of perfluorooctanoic acid by UV–Fenton process[J]. Chemical Engineering Journal, 2012, 184: 156-162. doi: 10.1016/j.cej.2012.01.020
[12] CHENG J, LIANG X, YANG S, et al. Photochemical defluorination of aqueous perfluorooctanoic acid(PFOA) by VUV/Fe3+ system[J]. Chemical Engineering Journal, 2014, 239: 242-249. doi: 10.1016/j.cej.2013.11.023
[13] ANUMO T, DAGNINO S, VANDERVORT D R, et al. Transformation of polyfluorinated compounds in natural waters by advanced oxidation processes[J]. Chemosphere, 2016, 144: 1780-1787. doi: 10.1016/j.chemosphere.2015.10.070
[14] YANG S, CHENG J, SUN J, et al. Defluorination of aqueous perfluorooctanesulfonate by activated persulfate oxidation[J]. Plos One, 2013, 8(10): e74877. doi: 10.1371/journal.pone.0074877
[15] 胡晋博, 李梦凯, 严群, 等. 小型化快速柱式反应试验应用于饮用水吸附技术中的研究进展[J]. 给水排水, 2021, 57(3): 17-24.
[16] 鲁智礼, 张堯, 黄俊亮, 等. 多相芬顿-活性炭工艺强化饮用水消毒效果[J]. 环境工程学报, 2019, 13(4): 792-799. doi: 10.12030/j.cjee.201812123
[17] MENG P, FANG X, MAIMAITI A, et al. Efficient removal of perfluorinated compounds from water using a regenerable magnetic activated carbon[J]. Chemosphere, 2019, 224: 187-194. doi: 10.1016/j.chemosphere.2019.02.132
[18] GRASSESCHI D, SILVA W C, DE SOUZA PAIVA R, et al. Surface coordination chemistry of graphene: Understanding the coordination of single transition metal atoms[J]. Coordination Chemistry Reviews, 2020, 422: 213469. doi: 10.1016/j.ccr.2020.213469
[19] CAO M H, WANG B B, YU H S, et al. Photochemical decomposition of perfluorooctanoic acid in aqueous periodate with VUV and UV light irradiation[J]. Journal of Hazardous Materials, 2010, 179(1-3): 1143-1146. doi: 10.1016/j.jhazmat.2010.02.030
[20] QU Y, ZHANG C, LI F, et al. Photo-reductive defluorination of perfluorooctanoic acid in water[J]. Water Research, 2010, 44(9): 2939-2947. doi: 10.1016/j.watres.2010.02.019
[21] HORI H, YAMAMOTO A, KOIKE K, et al. Photochemical decomposition of environmentally persistent short-chain perfluorocarboxylic acids in water mediated by iron (II)/(III) redox reactions[J]. Chemosphere, 2007, 68(3): 572-578. doi: 10.1016/j.chemosphere.2006.12.038
[22] JING C, ZHANG P, JIAN L I U. Photodegradation of perfluorooctanoic acid by 185 nm vacuum ultraviolet light[J]. Journal of Environmental Sciences, 2007, 19(4): 387-390. doi: 10.1016/S1001-0742(07)60064-3
[23] GIRI R R, OZAKI H, OKADA T, et al. Water matrix effect on UV photodegradation of perfluorooctanoic acid[J]. Water Science and Technology, 2011, 64(10): 1980-1986. doi: 10.2166/wst.2011.825
[24] MATILAINEN A, SILAN M. Removal of natural organic matter from drinking water by advanced oxidation processes[J]. Chemosphere, 2010, 80(4): 351-365. doi: 10.1016/j.chemosphere.2010.04.067
[25] WANG G S, LIAO C H, CHEN H W, et al. Characteristics of natural organic matter degradation in water by UV/H2O2 treatment[J]. Environmental Technology, 2006, 27(3): 277-287. doi: 10.1080/09593332708618638
[26] LIU X, WEI W, XU J, et al. Photochemical decomposition of perfluorochemicals in contaminated water[J]. Water Research, 2020, 186: 116311. doi: 10.1016/j.watres.2020.116311
[27] CHEN Z, TENG Y, MI N, et al. Highly efficient hydrated electron utilization and reductive destruction of perfluoroalkyl substances induced by intermolecular interaction[J]. Environmental Science & Technology, 2021, 55(6): 3996-4006.
[28] PARK H, VECITIS C D, CHENG J, et al. Reductive defluorination of aqueous perfluorinated alkyl surfactants: Effects of ionic headgroup and chain length[J]. The Journal of Physical Chemistry A, 2009, 113(4): 690-696. doi: 10.1021/jp807116q
[29] PARKINSON A, RODDICK F A, HOBDAY M D. UV photooxidation of NOM: issues related to drinking water treatment[J]. Journal of Water Supply:Research and Technology—AQUA, 2003, 52(8): 577-586. doi: 10.2166/aqua.2003.0051
[30] YU J, LV L, LAN P, et al. Effect of effluent organic matter on the adsorption of perfluorinated compounds onto activated carbon[J]. Journal of Hazardous Materials, 2012, 225: 99-106.
[31] MATSUI Y, KNAPPE D R, IWAKI K, et al. Pesticide adsorption by granular activated carbon adsorbers. 2. Effects of pesticide and natural organic matter characteristics on pesticide breakthrough curves[J]. Environmental Science & Technology, 2002, 36(15): 3432-3438.
[32] MATAFONVA G, BATOEV V. Recent advances in application of UV light-emitting diodes for degrading organic pollutants in water through advanced oxidation processes: A review[J]. Water Research, 2018, 132: 177-189. doi: 10.1016/j.watres.2017.12.079
[33] APPLEMAN T D, DICKENSON E R, BELLONA C, et al. Nanofiltration and granular activated carbon treatment of perfluoroalkyl acids[J]. Journal of Hazardous Materials, 2013, 260: 740-746. doi: 10.1016/j.jhazmat.2013.06.033
[34] MCCLEAF P, ENFLUND S, östlund A, et al. Removal efficiency of multiple poly-and perfluoroalkyl substances (PFASs) in drinking water using granular activated carbon (GAC) and anion exchange (AE) column tests[J]. Water Research, 2017, 120: 77-87. doi: 10.1016/j.watres.2017.04.057
[35] SGROI M, ANUMOLT, ROCCARO P, et al. Modeling emerging contaminants breakthrough in packed bed adsorption columns by UV absorbance and fluorescing components of dissolved organic matter[J]. Water Research, 2018, 145: 667-677. doi: 10.1016/j.watres.2018.09.018