2018 Volume 12 Issue 3
Article Contents

HU Chengzhi, LIU Huijuan, QU Jiuhui. Research progress of electrochemical technologies for water treatment[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 677-696. doi: 10.12030/j.cjee.201801179
Citation: HU Chengzhi, LIU Huijuan, QU Jiuhui. Research progress of electrochemical technologies for water treatment[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 677-696. doi: 10.12030/j.cjee.201801179

Research progress of electrochemical technologies for water treatment

  • Accepted Date: 25/01/2018
    Available Online: 22/03/2018
    Fund Project:
  • Electrochemical technologies are capable of keeping environmental interfacial processes at high rate and efficiency through directionally and accurately controlling the electron transfer. It is becoming a new strategy in dealing with water pollution and water scarcity for its extraordinary features and superiorities. In the past ten years, electrochemical technologies for water treatment and recycling have achieved great progress, which is heading for efficient electrodes, coupling technical processes, low-carbon operations. To thoroughly study the mechanism of electrochemical water treatment and recycling technologies, and further discuss the application of electrochemical technologies, attention has been focused on designing of electrode materials, exploiting of high-performance reactors, combination of technical processes, and recovery of resources and energy in wastewater. This article reviews the research progresses of electro-coagulation, electro-oxidation, electro-reduction, electro-(re)dialysis and electro-adsorption. In the end, this article puts forward a conclusion on technology development of electrochemical water treatment and recycling so as to get an outlook in this field.
  • 加载中
  • [1] MEKONNEN M M, HOEKSTRA A Y.Four billion people facing severe water scarcity[J].Science Advances,2016,2(2):e1500323 10.1126/sciadv.1500323

    Google Scholar Pub Med

    [2] 王绍文. 高浓度有机废水处理技术与工程应用[M].北京:冶金工业出版社, 2003

    Google Scholar Pub Med

    [3] 金龙,赵由才,王罗春.Fenton试剂-生物法联合处理有机废水研究进展[J].环境污染治理技术与设备,2002,3(8):52-57

    Google Scholar Pub Med

    [4] 孙怡,于利亮,黄浩斌,等. 高级氧化技术处理难降解有机废水的研发趋势及实用化进展[J]. 化工学报,2017,68(5):1743-1756 10.11949/j.issn.0438-1157.20161787

    Google Scholar Pub Med

    [5] 林文鹏.电化学法处理工业有机废水新技术研究进展[J].当代化工,2016,45(11): 2638-2641

    Google Scholar Pub Med

    [6] 陈刚,李丹阳,张光明.高浓度难降解有机废水处理技术[J].工业水处理,2003,23(3): 13-16

    Google Scholar Pub Med

    [7] 徐进,刘豹,兰华春,等. 有机工业废水的电化学处理工艺技术原理与应用[J].净水技术, 2014,33(4):36-40 10.3969/j.issn.1009-0177.2014.04.009

    Google Scholar Pub Med

    [8] 聂春红,王宝辉. 电化学工艺处理有机废水的研究进展[J].化工环保,2011,31(4): 327-331 10.3969/j.issn.1006-1878.2011.04.009

    Google Scholar Pub Med

    [9] RADJENOVIC J, SEDLAK D L.Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water[J].Environmental Science & Technology, 2015, 49(19): 11292-11302 10.1021/acs.est.5b02414

    Google Scholar Pub Med

    [10] JI Q H, YU D W, ZHANG G, et al.Microfluidic flow through polyaniline supported by lamellar-structured graphene for mass-transfer-enhanced electrocatalytic reduction of hexavalent chromium[J].Environmental Science & Technology,2015,49(22):13534-13541 10.1021/acs.est.5b03314

    Google Scholar Pub Med

    [11] HUO Z Y, XIE X, YU T, et al.Nanowire-modified three-dimensional electrode enabling low-voltage electroporation for water disinfection[J].Environmental Science & Technology,2016,50(14):7641-7649 10.1021/acs.est.6b01050

    Google Scholar Pub Med

    [12] LIU Y, DUSTINLEE J, XIA Q, et al.A graphene-based electrochemical filter for water purification[J].Journal of Materials Chemistry A,2014,2(2):16554-16562 10.1039/C4TA04006F

    Google Scholar Pub Med

    [13] 顾冬燕, 贾红华, 伍元东, 等. 利用微生物燃料电池同步降解沼液和三苯基氯化锡[J]. 化工学报,2016,67(5): 2056-2063 10.11949/j.issn.0438-1157.20151527

    Google Scholar Pub Med

    [14] 邓会宁, 田明, 杨秀丽, 等. 反电渗析法海洋盐差电池的结构优化与能量分析[J]. 化工学报, 2015,66(5):1919-1924 10.11949/j.issn.0438-1157.20141805

    Google Scholar Pub Med

    [15] 张石磊,江旭佳,洪国良,等. 电絮凝技术在水处理中的应用[J]. 工业水处理, 2013,33(1):10-14 10.3969/j.issn.1005-829X.2013.01.003

    Google Scholar Pub Med

    [16] 胡承志. 富含Al13与活性氯絮凝剂的电解制备及性能研究[D]. 北京: 中国科学院大学,2006

    Google Scholar Pub Med

    [17] HU C Z, WANG S Q, SUN, J Q, et al.An effective method for improving electrocoagulation process:Optimization of Al-13 polymer formation[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2016,489:234-240 10.1016/j.colsurfa.2015.10.063

    Google Scholar Pub Med

    [18] HU C Z, SUN J Q, WANG S Q, et al.Enhanced efficiency in HA removal by electrocoagulation through optimizing flocs properties: Role of current density and pH[J].Separation and Purification Technology,2017,175: 248-254 10.1016/j.seppur.2016.11.036

    Google Scholar Pub Med

    [19] CANIZARES P, JIMENEZ C, MARTINEZ F, et al.Study of the electrocoagulation process using aluminum and iron electrodes[J].Industrial & Engineering Chemistry Research,2007,46(19):6189-6195 10.1021/ie070059f

    Google Scholar Pub Med

    [20] BAYRAMOGLU M, EYVAZ M, KOBYA M.Treatment of the textile wastewater by electrocoagulation: Economical evaluation[J].Chemical Engineering Journal,2006,128(2):155-161 10.1016/j.cej.2006.10.008

    Google Scholar Pub Med

    [21] LIU H J, ZHAO X, QU J H.Electrochemistry for the Environment[M].New York: Springer,2010:245-262

    Google Scholar Pub Med

    [22] YU Z S, WEN X H.Screening and identification of yeasts for decolorizing synthetic dyes in industrial wastewater[J].International Biodeterioration & Biodegradation,2005,56(2):109-114 10.1016/j.ibiod.2005.05.006

    Google Scholar Pub Med

    [23] VASUDEVAN S, KANNAN B S, LAKSHMI J, et al.Effects of alternating and direct current in electrocoagulation process on the removal of fluoride from water[J].Journal of Chemical Technology and Biotechnology,2011,86(3):428-436 10.1002/jctb.2534

    Google Scholar Pub Med

    [24] EYVAZ M, KIRLAROGLU M, AKTAS T S, et al.The effects of alternating current electrocoagulation on dye removal from aqueous solutions[J].Chemical Engineering Journal,2009,153(1/2/3):16-22 10.1016/j.cej.2009.05.028

    Google Scholar Pub Med

    [25] HUA L C, HUANG C, SU Y C, et al.Effects of electro-coagulation on fouling mitigation and sludge characteristics in a coagulation-assisted membrane bioreactor[J].Journal of Membrane Science,2015,495:29-36 10.1016/j.memsci.2015.07.062

    Google Scholar Pub Med

    [26] SARI M A, CHELLAM S.Surface water nanofiltration incorporating (electro) coagulation–microfiltration pretreatment: Fouling control and membrane characterization[J].Journal of Membrane Science,2013,437(12):249-256 10.1016/j.memsci.2013.02.050

    Google Scholar Pub Med

    [27] CHELLAM S, SARI M A.Aluminum electrocoagulation as pretreatment during microfiltration of surface water containing NOM: A review of fouling, NOM, DBP, and virus control[J].Journal of Hazardous Materials,2016,304(2):490-501 10.1016/j.jhazmat.2015.10.054

    Google Scholar Pub Med

    [28] SUN J, HU C, TONG T, et al.Performance and mechanisms of ultrafiltration membrane fouling mitigation by coupling coagulation and applied electric field in a novel electrocoagulation membrane reactor[J].Environmental Science & Technology,2017,51(15):8544-8551 10.1021/acs.est.7b01189

    Google Scholar Pub Med

    [29] PANIZZA M, CERISOLA G.Direct and mediated anodic oxidation of organic pollutants[J].Chemical Reviews,2009,109(12):6541-6569 10.1021/cr9001319

    Google Scholar Pub Med

    [30] COMNINELLIS C.Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for wastewater treatment[J].Electrochimica Acta,1994,39(11/12):1857-1862 10.1016/0013-4686(94)85175-1

    Google Scholar Pub Med

    [31] KAUR P, KUSHWAHA J P, SANGAL V K.Evaluation and disposability study of actual textile wastewater treatment by electro-oxidation method using Ti/RuO2 anode[J].Process Safety & Environmental Protection,2017,111:13-22 10.1016/j.psep.2017.06.004.

    Google Scholar Pub Med

    [32] TURRO E, GIANNIS A, COSSU R, et al.Electrochemical oxidation of stabilized landfill leachate on DSA electrodes[J].Journal of Hazardous Materials,2011,190(1/2/3):460-465 10.1016/j.jhazmat.2011.03.085

    Google Scholar Pub Med

    [33] PEREZ G, FERNANDEZ-ALBA A R, URTIAGA A M, et al.Electro-oxidation of reverse osmosis concentrates generated in tertiary water treatment[J].Water Research,2010,44(9):2763-2772 10.1016/j.watres.2010.02.017

    Google Scholar Pub Med

    [34] ZHU X, TONG M, SHI S, et al.Essential explanation of the strong mineralization performance of boron-doped diamond electrodes[J].Environmental Science & Technology,2008,42(13):4914-4920 10.1021/es800298p

    Google Scholar Pub Med

    [35] GRGUR B N, MIJIN D Z.A kinetics study of the methomyl electrochemical degradation in the chloride containing solutions[J].Applied Catalysis B: Environmental,2014,147(8):429-438 10.1016/j.apcatb.2013.09.028

    Google Scholar Pub Med

    [36] BERGMANN E H M, ROLLIN J, IOURTCHOUK T.The occurrence of perchlorate during drinking water electrolysis using BDD anodes[J].Electrochimica Acta,2009,54(7):2102-2107 10.1016/j.electacta.2008.09.040

    Google Scholar Pub Med

    [37] LEFFRANG U, EBERT K, FLORY K, et al.Organic waste destruction by indirect electrooxidation[J].Separation Science & Technology,1995,30(7/8/9):1883-1899 10.1080/01496399508010382

    Google Scholar Pub Med

    [38] AYOUB K, NéLIEU S, HULLEBUSCH E D V, et al.Electro-Fenton removal of TNT: Evidences of the electro-chemical reduction contribution[J].Applied Catalysis B: Environmental,2011,104(1/2):169-176 10.1016/j.apcatb.2011.02.016

    Google Scholar Pub Med

    [39] MOHAJERI S, AZIZ H A, ISA M H, et al.Statistical optimization of process parameters for landfill leachate treatment using electro-Fenton technique[J].Journal of Hazardous Materials,2010,176(1/2/3):749-758 10.1016/j.jhazmat.2009.11.099

    Google Scholar Pub Med

    [40] KURT U, APAYDIN O, GONULLU T M.Reduction of COD in wastewater from an organized tannery industrial region by electro-fenton process[J].Journal of Hazardous Materials,2006,143(1):33-40 10.1016/j.jhazmat.2006.08.065

    Google Scholar Pub Med

    [41] BROWN R K, HARNISCH F, DOCKHORN T, et al.Examining sludge production in bioelectrochemical systems treating domestic wastewater[J].Bioresource Technology,2015,198:913-917 10.1016/j.biortech.2015.09.081

    Google Scholar Pub Med

    [42] DOMINGUEZ-RAMOS A, ALDACO R, IRABIEN A.Photovoltaic solar electrochemical oxidation (PSEO) for treatment of lignosulfonate wastewater[J].Journal of Chemical Technology & Biotechnology,2010,85(6):821-830 10.1002/jctb.2370

    Google Scholar Pub Med

    [43] KIM J, CHOI W J K, CHOI J, et al.Electrolysis of urea and urine for solar hydrogen[J].Catalysis Today,2013,199: 2-7 10.1016/j.cattod.2012.02.009

    Google Scholar Pub Med

    [44] MAO X H, CIBLAK A, AMIRI M, et al.Redox control for electrochemical dechlorination of trichloroethylene in bicarbonate aqueous media[J].Environmental Science & Technology,2011,45(15):6517-6523 10.1021/es200943z

    Google Scholar Pub Med

    [45] MARTINEZ-HUITLE C A, RODRIGO M A, SIRES I, et al.Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: A critical review[J].Chemical Reviews,2015,115(24):13362-13407 10.1021/acs.chemrev.5b00361

    Google Scholar Pub Med

    [46] AVRAHAM E, NOKED M, SOFFER A, et al.The feasibility of boron removal from water by capacitive deionization[J].Electrochimica Acta,2011,56(18):6312-6317 10.1016/j.electacta.2011.05.037

    Google Scholar Pub Med

    [47] RODRIGUEZ-VALADEZ F, ORTIZ-EXIGA C, IBANEZ J G, et al.Electroreduction of Cr(VI) to Cr(III) on reticulated vitreous carbon electrodes in a parallel-plate reactor with recirculation[J].Environmental Science & Technology,2005,39(6):1875-1879 10.1021/es049091g

    Google Scholar Pub Med

    [48] WIGGINS-CAMACHO J D, STEVENSON K J.Indirect electrocatalytic degradation of cyanide at nitrogen-doped carbon nanotube electrodes[J].Environmental Science & Technology,2011,45(8):3650-3656 10.1021/es104229m

    Google Scholar Pub Med

    [49] ZOU B X, LIU X X, DIAMOND D, et al.Electrochemical synthesis of WO3/PANI composite for electrocatalytic reduction of iodate[J].Electrochimica Acta,2010,55(12):3915-3920 10.1016/j.electacta.2010.02.034

    Google Scholar Pub Med

    [50] XU Y H, ZHANG H, CHU C P, et al.Dechlorination of chloroacetic acids by electrocatalytic reduction using activated silver electrodes in aqueous solutions of different pH[J].Journal of Electroanalytical Chemistry,2012,664:39-45 10.1016/j.jelechem.2011.10.010

    Google Scholar Pub Med

    [51] BEARD K D, VAN ZEE J W, MONNIER J R.Preparation of carbon-supported Pt-Pd electrocatalysts with improved physical properties using electroless deposition methods[J].Applied Catalysis B:Environmental,2009,88(1/2):185-193 10.1016/j.apcatb.2008.09.033

    Google Scholar Pub Med

    [52] REGO R, OLIVEIRA C, VELAZQUEZ A, et al.A new route to prepare carbon paper-supported Pd catalyst for oxygen reduction reaction[J].Electrochemistry Communications,2010,12(6):745-748 10.1016/j.elecom.2010.03.022

    Google Scholar Pub Med

    [53] ZHU K R, BAIG S A, XU J, et al.Electrochemical reductive dechlorination of 2,4-dichlorophenoxyacetic acid using a palladium/nickel foam electrode[J].Electrochimica Acta,2012,69:389-396 10.1016/j.electacta.2012.03.038

    Google Scholar Pub Med

    [54] WU Y F, GAN L, ZHANG S P, et al.Enhanced electrocatalytic dechlorination of para-chloronitrobenzene based on Ni/Pd foam electrode[J].Chemical Engineering Journal,2017,316:146-153 10.1016/j.cej.2017.01.024

    Google Scholar Pub Med

    [55] KORSHIN G V, JENSEN M D.Electrochemical reduction of haloacetic acids and exploration of their removal by electrochemical treatment[J].Electrochimica Acta,2001,47(5):747-751 10.1016/S0013-4686(01)00755-1

    Google Scholar Pub Med

    [56] ZHAO X, LIU H J, LI A Z, et al.Bromate removal by electrochemical reduction at boron-doped diamond electrode[J].Electrochimica Acta,2012,62:181-184 10.1016/j.electacta.2011.12.013

    Google Scholar Pub Med

    [57] 李昂臻.电/光电催化降解水中消毒副产物及其前驱体的研究[D].北京:中国科学院研究生院,2012

    Google Scholar Pub Med

    [58] 王颖.电化学-化学催化还原水中硝酸盐氮的研究[D].北京:中国科学院研究生院,2006

    Google Scholar Pub Med

    [59] PEEL J W, REDDY K J, SULLIVAN B P, et al.Electrocatalytic reduction of nitrate in water[J].Water Research,2003,37(10):2512-2519 10.1016/S0043-1354(03)00008-3

    Google Scholar Pub Med

    [60] WANG Y, QU J H, LIU H J.Preparation and electrochemical properties of the Pd-modified Cu electrode for nitrate reduction in water[J].Chinese Chemical Letters,2006,17(1):61-64

    Google Scholar Pub Med

    [61] WANG Y, QU J H, WU R C, et al.The electrocatalytic reduction of nitrate in water on Pd/Sn-modified activated carbon fiber electrode[J].Water Research,2006,40(6):1224-1232 10.1016/j.watres.2006.01.017

    Google Scholar Pub Med

    [62] ZHAO X, GUO L B, ZHANG B F, et al.Photoelectrocatalytic oxidation of Cu(II)-EDTA at the TiO2 electrode and simultaneous recovery of Cu(II) by electrodeposition[J].Environmental Science & Technology,2013,47(9):4480-4488 10.1021/es3046982

    Google Scholar Pub Med

    [63] ZHAO X, ZHANG J J, QIAO M, et al.Enhanced photoelectrocatalytic decomposition of copper cyanide complexes and simultaneous recovery of copper with a Bi2MoO6 electrode under visible light by EDTA/K4P2O7[J].Environmental Science & Technology,2015,49(7):4567-4574 10.1021/es5062374

    Google Scholar Pub Med

    [64] ZHAO X, ZHANG J J, QU J H.Photoelectrocatalytic oxidation of Cu-cyanides and Cu-EDTA at TiO2 nanotube electrode[J].Electrochimica Acta,2015,180:129-137 10.1016/j.electacta.2015.08.103

    Google Scholar Pub Med

    [65] ZENG H B, TIAN S C, LIU H F, et al.Photo-assisted electrolytic decomplexation of Cu-EDTA and Cu recovery enhanced by H2O2 and electro-generated active chlorine[J].Chemical Engineering Journal,2016,301:371-379 10.1016/j.cej.2016.04.006

    Google Scholar Pub Med

    [66] LI L H, HUANG Z P, FAN X X, et al.Preparation and characterization of a Pd modified Ti/SnO2-Sb anode and its electrochemical degradation of Ni-EDTA[J].Electrochimica Acta,2017,231:354-362 10.1016/j.electacta.2017.02.072

    Google Scholar Pub Med

    [67] 杨桂蓉.可见光电极研制及光电催化去除络合态重金属研究[D].天津:河北工业大学,2014

    Google Scholar Pub Med

    [68] MAO R, ZHAO X, LAN H C, et al.Efficient electrochemical reduction of bromate by a Pd/rGO/CFP electrode with low applied potentials[J].Applied Catalysis B: Environmental,2014,160-161(Supplement C):179-187 10.1016/j.apcatb.2014.04.040

    Google Scholar Pub Med

    [69] MAO R, ZHAO X, LAN H C, et al.Graphene-modified Pd/C cathode and Pd/GAC particles for enhanced electrocatalytic removal of bromate in a continuous three-dimensional electrochemical reactor[J].Water Research,2015,77(Supplement C):1-12 10.1016/j.watres.2015.03.002

    Google Scholar Pub Med

    [70] MORALES-GUIO G C, STERN L A, HU X L.Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution[J].Chemical Society Reviews,2014,43(18):6555-6569 10.1039/C3CS60468C

    Google Scholar Pub Med

    [71] MI Y, WEN L Y, WANG Z J, et al.Ultra-low mass loading of platinum nanoparticles on bacterial cellulose derived carbon nanofibers for efficient hydrogen evolution[J].Catalysis Today,2016,262:141-145 10.1016/j.cattod.2015.08.019

    Google Scholar Pub Med

    [72] YIN H J, ZHAO S L, ZHAO K, et al.Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity[J].Nature Communications,2015,6:6430-6437 10.1038/ncomms7430

    Google Scholar Pub Med

    [73] 章晨林,张新妙,郭智,等. 电渗析法处理含盐废水的进展[J]. 现代化工,2016,36(7):13-16

    Google Scholar Pub Med

    [74] KORNGOLD E, ARONOV L, DALTROPHE N.Electrodialysis of brine solutions discharged from an RO plant[J].Desalination,2009,242(1/2/3):215-227 10.1016/j.desal.2008.04.008

    Google Scholar Pub Med

    [75] 王先锋. 高浓度酸性染料废水除盐工艺可行性研究[D]. 西安:陕西科技大学,2012

    Google Scholar Pub Med

    [76] ZUO K C, CHANG J L, LIU F B, et al.Enhanced organics removal and partial desalination of high strength industrial wastewater with a multi-stage microbial desalination cell[J].Desalination,2017,423:104-110 10.1016/j.desal.2017.09.018

    Google Scholar Pub Med

    [77] LIU R D, WANG Y K, WU G, et al.Development of a selective electrodialysis for nutrient recovery and desalination during secondary effluent treatment[J].Chemical Engineering Journal,2017,322:224-233 10.1016/j.cej.2017.03.149

    Google Scholar Pub Med

    [78] WANG D, GAO X L, ZHANG Y S, et al.Recovery of petroleum sulfonate from petrochemical dispersion by modified three-compartment electrodialysis[J].Separation and Purification Technology,2017,186:135-144 10.1016/j.seppur.2017.05.042

    Google Scholar Pub Med

    [79] 孙长顺,徐军礼,张振文,等. 三室电渗析回收黄姜皂素水解废液中硫酸的研究[J]. 给水排水,2012,48(7):135-139 10.3969/j.issn.1002-8471.2012.07.032

    Google Scholar Pub Med

    [80] LACEY R E.Energy by reverse electrodialysis[J].Ocean Engineering,1980,7(1):1-47 10.1016/0029-8018(80)90030-X

    Google Scholar Pub Med

    [81] PATTLE E R.Production of electric power by mixing fresh and salt water in the hydroelectric pile[J].Nature,1954,174(4431):660-666 10.1038/174660a0

    Google Scholar Pub Med

    [82] MEI Y, TANG C Y.Recent developments and future perspectives of reverse electrodialysis technology: A review[J].Desalination,2018,425:156-174 10.1016/j.desal.2017.10.021

    Google Scholar Pub Med

    [83] POST J W, GOETING C H, VALK J, et al.Towards implementation of reverse electrodialysis for power generation from salinity gradients[J].Desalination and Water Treatment,2010,16(1/2/3):182-193 10.5004/dwt.2010.1093

    Google Scholar Pub Med

    [84] PIOTR D, JOANNA D, KITTY N, et al.Ion conductive spacers for increased power generation in reverse electrodialysis[J].Journal of Membrane Science,2010,347(1/2):101-107 10.1016/j.memsci.2009.10.011

    Google Scholar Pub Med

    [85] ENVER G, ZHANG Y L, MICHEL S, et al.Tailor-made anion-exchange membranes for salinity gradient power generation using reverse electrodialysis[J].Chemsuschem,2012,5(11):2262-2270 10.1002/cssc.201200298

    Google Scholar Pub Med

    [86] MAHBOOBEH V, HAMED K, RYOSUKE T, et al.Biofouling phenomena on anion exchange membranes under the reverse electrodialysis process[J].Journal of Membrane Science,2017,530:232-239 10.1016/j.memsci.2017.02.036

    Google Scholar Pub Med

    [87] D′ANGELO A, TEDESCO M, CIPOLLINA A, et al.Reverse electrodialysis performed at pilot plant scale: Evaluation of redox processes and simultaneous generation of electric energy and treatment of wastewater[J].Water Research,2017,125(1):123-131 10.1016/j.watres.2017.08.008

    Google Scholar Pub Med

    [88] VEERMAN J, DE JONG R M, SAAKES M, et al.Reverse electrodialysis: Comparison of six commercial membrane pairs on the thermodynamic efficiency and power density[J].Journal of Membrane Science,2009,343(1/2):7-15 10.1016/j.memsci.2009.05.047

    Google Scholar Pub Med

    [89] SCIALDONE O, D′ANGELO A, GALIA A.Energy generation and abatement of acid orange 7 in reverse electrodialysis cells using salinity gradients[J].Journal of Electroanalytical Chemistry,2015,738:61-68 10.1016/j.jelechem.2014.11.024

    Google Scholar Pub Med

    [90] LI X H, JIN X D, ZHAO N N, et al.Novel bio-electro-Fenton technology for azo dye wastewater treatment using microbial reverse-electrodialysis electrolysis cell[J].Bioresource Technology,2017,228:322-329 10.1016/j.biortech.2016.12.114

    Google Scholar Pub Med

    [91] XU L N, ZHAO H Z, SHI S Y, et al.Electrolytic treatment of C.I.acid orange 7 in aqueous solution using a three-dimensional electrode reactor[J].Dyes and Pigments,2008,77(1):158-164 10.1016/j.dyepig.2007.04.004

    Google Scholar Pub Med

    [92] GAO G D, ZHANG Q Y, HAO Z W, et al.Carbon nanotube membrane stack for flow-through sequential regenerative electro-Fenton[J].Environmental Science & Technology,2015,49(4):2375-2383 10.1021/es505679e

    Google Scholar Pub Med

    [93] CUSICK R D, KIM Y, LOGAN B E.Energy capture from thermolytic solutions in microbial reverse-electrodialysis cells[J].Science,2012,335(6075):1474-1477 10.1126/science.1219330

    Google Scholar Pub Med

    [94] LUO X, CAO X X, MO Y H, et al.Power generation by coupling reverse electrodialysis and ammonium bicarbonate: Implication for recovery of waste heat[J].Electrochemistry Communications,2012,19(1):25-28 10.1016/j.elecom.2012.03.004

    Google Scholar Pub Med

    [95] MICHELE T, CLAUDIO S, DAVIDE V, et al.Performance of the first reverse electrodialysis pilot plant for power production from saline waters and concentrated brines[J].Journal of Membrane Science,2016,500:33-45 10.1016/j.memsci.2015.10.057

    Google Scholar Pub Med

    [96] MICHELE T, ANDREA C, ALESSANDRO T, et al.Towards 1 kW power production in a reverse electrodialysis pilot plant with saline waters and concentrated brines[J].Journal of Membrane Science,2017,522:226-236 10.1016/j.memsci.2016.09.015

    Google Scholar Pub Med

    [97] ANDELMAN M.Ionic group derivitized nano porous carbon electrodes for capacitive deionization[J].Journal of Materials Science & Chemical Engineering,2014,2(3):25-36 10.4236/msce.2014.23002

    Google Scholar Pub Med

    [98] PORADA S, ZHAO R, WAL V D A, et al.Review on the science and technology of water desalination by capacitive deionization[J].Progress in Materials Science,2013,58(8):1388-1442 10.1016/j.pmatsci.2013.03.005

    Google Scholar Pub Med

    [99] GARCIA-QUISMONDO E, SANTOS C, SORIA J, et al.New operational modes to increase energy efficiency in capacitive deionization systems[J].Environmental Science & Technology,2016,50(11):6053-6060 10.1021/acs.est.5b05379

    Google Scholar Pub Med

    [100] ZORNITTA R L, RUOTOLO L A M.Simultaneous analysis of electrosorption capacity and kinetics for CDI desalination using different electrode configurations[J].Chemical Engineering Journal,2018,332:33-41 10.1016/j.cej.2017.09.067

    Google Scholar Pub Med

    [101] WANG G, QIAN B Q, DONG Q, et al.Highly mesoporous activated carbon electrode for capacitive deionization[J].Separation & Purification Technology,2013,103:216-221 10.1016/j.seppur.2012.10.041

    Google Scholar Pub Med

    [102] CHUNGLIN Y, HSINGCHENG H, LI K C, et al.Improved performance in capacitive deionization of activated carbon electrodes with a tunable mesopore and micropore ratio[J].Desalination,2015,367:60-68 10.1016/j.desal.2015.03.035

    Google Scholar Pub Med

    [103] HOU C H, HUANG C Y.A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization[J].Desalination,2013,314(8):124-129 10.1016/j.desal.2012.12.029

    Google Scholar Pub Med

    [104] VILLAR I, ROLDAN S, RUIZ V, et al.Capacitive deionization of NaCl solutions with modified activated carbon electrodes [J].Energy & Fuels,2010,24(6):3329-3333 10.1021/ef901453q

    Google Scholar Pub Med

    [105] WANG G, DONG Q, LING Z, et al.Hierarchical activated carbon nanofiber webs with tuned structure fabricated by electrospinning for capacitive deionization[J].Journal of Materials Chemistry,2012,22(41):21819-21823 10.1039/c2jm34890j

    Google Scholar Pub Med

    [106] WANG G,PAN C,WANG L P,et al.Activated carbon nanofiber webs made by electrospinning for capacitive deionization[J].Electrochimica Acta,2012,69(5):65-70 10.1016/j.electacta.2012.02.066

    Google Scholar Pub Med

    [107] LIANG P, YUAN L L, YANG X F, et al.Coupling ion-exchangers with inexpensive activated carbon fiber electrodes to enhance the performance of capacitive deionization cells for domestic wastewater desalination[J].Water Research,2013,47(7):2523-2530 10.1016/j.watres.2013.02.037

    Google Scholar Pub Med

    [108] FARMER J C, FIX D V, MACK G V, et al.The use of capacitive deionization with carbon aerogel electrodes to remove inorganic contaminants from water[C]//Office of Scientific & Technical Information Technical Reports.Electric Power Research Institute Low-Level Waste Conference,1995:595-599

    Google Scholar Pub Med

    [109] SUSS M E, BAUMANN T F, BOURCIER W L, et al.Capacitive desalination with flow-through electrodes[J].Energy & Environmental Science,2012,5(11):9511-9519 10.1039/C2EE21498A

    Google Scholar Pub Med

    [110] WANG L, WANG M, HUANG Z H, et al.Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes[J].Journal of Materials Chemistry,2011,21(45):18295-18299 10.1039/c1jm13105b

    Google Scholar Pub Med

    [111] LI H B, PAN L K, LU T, et al.A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization[J].Journal of Electroanalytical Chemistry,2011,653(1/2):40-44 10.1016/j.jelechem.2011.01.012

    Google Scholar Pub Med

    [112] AGHIGH A, ALIZADEH V, WONG H Y, et al.Recent advances in utilization of graphene for filtration and desalination of water: A review[J].Desalination,2015,365:389-397 10.1016/j.desal.2015.03.024

    Google Scholar Pub Med

    [113] XU Y X, BAI H, LU G W, et al.Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets[J].Journal of the American Chemical Society,2008,130(18):5856-5857 10.1021/ja800745y

    Google Scholar Pub Med

    [114] HOU C H, LIU N L, HSU H L, et al.Development of multi-walled carbon nanotube/poly(vinyl alcohol) composite as electrode for capacitive deionization[J].Separation & Purification Technology,2014,130:7-14 10.1016/j.seppur.2014.04.004

    Google Scholar Pub Med

    [115] ZHANG D S, WEN X R, SHI L Y, et al.Enhanced capacitive deionization of graphene/mesoporous carbon composites[J].Nanoscale,2012,4(17):5440-5446 10.1039/c2nr31154b

    Google Scholar Pub Med

    [116] ZORNITTA R L, GARCIA-MATEOS F J, LADO J J, et al.High-performance activated carbon from polyaniline for capacitive deionization[J].Carbon,2017,123:318-333 10.1016/j.carbon.2017.07.071

    Google Scholar Pub Med

    [117] 毕慧芝, 田秉晖. 电吸附活性炭电极制备及电吸附特性[J]. 环境工程学报,2015,9(4):1606-1612

    Google Scholar Pub Med

    [118] GEIM A K, NOVOSELOV K S.The rise of graphene[J].Nature Materials,2007,6(3):183-191 10.1038/nmat1849

    Google Scholar Pub Med

    [119] WANG H, YUAN X Z, WU Y, et al.Graphene-based materials: Fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogen storage/generation.[J].Advances in Colloid and Interface Science,2013,195-196(7):19-40 10.1016/j.cis.2013.03.009

    Google Scholar Pub Med

    [120] LIANG L P, JIANG X, YANG W J, et al.Kinetics of selenite reduction by zero-valent iron[J].Desalination and Water Treatment,2015,53(9):2540-2548 10.1080/19443994.2013.862868

    Google Scholar Pub Med

    [121] XU X, SUN Z, CHUA D H C, et al.Novel nitrogen doped graphene sponge with ultrahigh capacitive deionization performance[J].Scientific Reports,2015,5:11225 10.1038/srep11225

    Google Scholar Pub Med

    [122] SHI W H, LI H B, CAO X H, et al.Ultrahigh performance of novel capacitive deionization electrodes based on a three-dimensional graphene architecture with nanopores[J].Scientific Reports,2016,6:18966 10.1038/srep18966

    Google Scholar Pub Med

    [123] 刘方园, 胡承志, 李永峰,等.MnO2/CFP复合电极的制备及电吸附Pb2+特性的研究[J]. 环境科学,2015,36(2):552-558 10.13227/j.hjkX.2015.02.024

    Google Scholar Pub Med

    [124] HU C Z, DONG J J, WANG T, et al.Nitrate electro-sorption/reduction in capacitive deionization using a novel Pd/NiAl-layered metal oxide film electrode[J].Chemical Engineering Journal,2018,335:475-482 10.1016/j.cej.2017.10.167

    Google Scholar Pub Med

    [125] SUSS M E, PORADA S, SUN X, et al.Water desalination via capacitive deionization: What is it and what can we expect from it?[J].Energy & Environmental Science,2015,8(8):2296-2319 10.1039/C5EE00519A

    Google Scholar Pub Med

    [126] BOUHADANA Y, AVRAHAM E, NOKED M, et al.Capacitive deionization of NaCl solutions at non-steady-state conditions: Inversion functionality of the carbon electrodes[J].Journal of Physical Chemistry C,2011,115(33):16567-16573 10.1021/jp2047486

    Google Scholar Pub Med

    [127] JI Q H, YU D W, ZHANG G, et al.Microfluidic flow through polyaniline supported by lamellar-structured graphene for mass-transfer-enhanced electrocatalytic reduction of hexavalent chromium[J].Environmental Science & Technology,2015,49(22):13534-13541 10.1021/acs.est.5b03314

    Google Scholar Pub Med

    [128] GILBERT D M SALE TC.Sequential electrolytic oxidation and reduction of aqueous phase energetic compounds[J].Environmental Science & Technology,2005,39(23):9270-9277 10.1021/es051452k

    Google Scholar Pub Med

    [129] JI Q H, AN X Q, LIU H J, et al.Electric double-layer effects induce separation of aqueous metal ions[J].ACS Nano,2015,9(11):10922-10930 10.1021/acsnano.5b04027

    Google Scholar Pub Med

    [130] LI H B, GAO Y, PAN L K, et al.Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes[J].Water Research,2008,42(20):4923-4928 10.1016/j.watres.2008.09.026

    Google Scholar Pub Med

    [131] LI H B, ZOU L.Ion-exchange membrane capacitive deionization: A new strategy for brackish water desalination[J].Desalination,2011, 275(1):62-66 10.1016/j.desal.2011.02.027

    Google Scholar Pub Med

    [132] YAN C J, ZOU L, SHORT R.Single-walled carbon nanotubes and polyaniline composites for capacitive deionization[J].Desalination,2012,290(1):125-129 10.1016/j.desal.2012.01.017

    Google Scholar Pub Med

    [133] JI Q H, AN X Q, LIU H J, et al.Electric double-layer effects induce separation of aqueous metal ions[J].ACS Nano,2015,9(11):10922-10930 10.1021/acsnano.5b04027

    Google Scholar Pub Med

    [134] XIE M, SHON H K, GRAY S R, et al.Membrane-based processes for wastewater nutrient recovery: Technology, challenges, and future direction[J].Water Research,2016,89: 210-221 10.1016/j.watres.2015.11.045

    Google Scholar Pub Med

    [135] 黄黛诗. 膜电容脱盐(MCDI)小试装置除盐特性研究[D]. 北京:清华大学,2015

    Google Scholar Pub Med

    [136] 王村. 电化学氧化与纳滤法耦合处理染料废水[D]. 天津:天津大学,2009

    Google Scholar Pub Med

    [137] 何伟华,刘佳,王海曼,等.微生物电化学污水处理技术的优势与挑战[J].电化学,2017,23(3):283-296 10.13208/j.electrochem.161054

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(14442) PDF downloads(2377) Cited by(0)

Access History

Research progress of electrochemical technologies for water treatment

Fund Project:

Abstract: Electrochemical technologies are capable of keeping environmental interfacial processes at high rate and efficiency through directionally and accurately controlling the electron transfer. It is becoming a new strategy in dealing with water pollution and water scarcity for its extraordinary features and superiorities. In the past ten years, electrochemical technologies for water treatment and recycling have achieved great progress, which is heading for efficient electrodes, coupling technical processes, low-carbon operations. To thoroughly study the mechanism of electrochemical water treatment and recycling technologies, and further discuss the application of electrochemical technologies, attention has been focused on designing of electrode materials, exploiting of high-performance reactors, combination of technical processes, and recovery of resources and energy in wastewater. This article reviews the research progresses of electro-coagulation, electro-oxidation, electro-reduction, electro-(re)dialysis and electro-adsorption. In the end, this article puts forward a conclusion on technology development of electrochemical water treatment and recycling so as to get an outlook in this field.

Reference (137)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint