超声强化EDDS/EGTA淋洗修复重金属污染土壤

荀志祥, 王世泽, 王明新, 王城晨, 朱颖一. 超声强化EDDS/EGTA淋洗修复重金属污染土壤[J]. 环境工程学报, 2018, 12(6): 1766-1774. doi: 10.12030/j.cjee.201710115
引用本文: 荀志祥, 王世泽, 王明新, 王城晨, 朱颖一. 超声强化EDDS/EGTA淋洗修复重金属污染土壤[J]. 环境工程学报, 2018, 12(6): 1766-1774. doi: 10.12030/j.cjee.201710115
XUN Zhixiang, WANG Shize, WANG Mingxin, WANG Chengchen, ZHU Yingyi. Remediation of heavy metal contaminated soil by ultrasound-enhanced washing with EDDS and EGTA[J]. Chinese Journal of Environmental Engineering, 2018, 12(6): 1766-1774. doi: 10.12030/j.cjee.201710115
Citation: XUN Zhixiang, WANG Shize, WANG Mingxin, WANG Chengchen, ZHU Yingyi. Remediation of heavy metal contaminated soil by ultrasound-enhanced washing with EDDS and EGTA[J]. Chinese Journal of Environmental Engineering, 2018, 12(6): 1766-1774. doi: 10.12030/j.cjee.201710115

超声强化EDDS/EGTA淋洗修复重金属污染土壤

  • 基金项目:

    江苏省政策引导类计划(产学研合作)-前瞻性联合研究项目(BY2015027-08)

    江苏省高校“青蓝工程”培养对象资助项目

Remediation of heavy metal contaminated soil by ultrasound-enhanced washing with EDDS and EGTA

  • Fund Project:
  • 摘要: 采用响应面法中的Box-Behnken实验设计,研究了超声强化N,N'-乙二胺二琥珀酸(EDDS)和乙二醇双(2-氨基乙基醚)四乙酸(EGTA)复合淋洗对土壤中Cu、Zn、Pb 和Cd 等4种重金属的去除效果,拟合了各重金属去除率、潜在生态风险指数削减率与EDDS投加量、EGTA投加量、超声功率和初始pH等淋洗条件之间的关系,模拟值与观测值相关性高,模拟精度较高。EGTA在较广pH范围对高生理毒性的Cd具有较强的洗脱效果,酸性条件下可有效洗脱Zn;Cu去除率在酸性条件下随着EDDS投加量的增加而显著提高,Pb去除率则在碱性条件随着EDDS投加量的增加而显著提高。基于模型优化结果的验证实验显示,当EDDS/重金属摩尔质量比为0.81、EGTA/重金属摩尔质量比为3.92、超声功率为569.85 W、pH为3.95时,潜在生态风险指数削减率最大,达到86.05%,Cu、Zn、Pb和Cd去除率分别为72.48%、62.40%、59.25%和87.45%,与模型拟合结果偏差较小,表明模型具有较好的拟合和预测能力。
  • 加载中
  • [1] INOUE K.Heavy metal toxicity[J].Journal of Clinical Toxicology,2013,13(3):110-117 10.4172/2161-0495.S3-007
    [2] 陈志良, 雷国建, 苏耀明, 等. 茶皂素与EDTA淋洗对土壤中铅、锌形态的影响[J]. 生态环境学报,2015,24(8):1394-1398 10.16258/j.cnki.1674-5906.2015.08.021
    [3] LEE C S, LI X, SHI W, CHEUNG S C, et al.Metal contamination in urban, suburban, and country park soils of Hong Kong:A study based on GIS and multivariate statistics[J].Science of the Total Environment,2006,356(1/2/3):45-61 10.1016/j.scitotenv.2005.03.024
    [4] OVES M, KHAN M S, ZAIDI A, et al.Soil Contamination, Nutritive Value, and Human Health Risk Assessment of Heavy Metals: An Overview[M].Vienna:Springer Vienna,2012:1-27
    [5] TORRES L G, LOPEZ R B, BELTRAN M.Removal of As, Cd, Cu, Ni, Pb, and Zn from a highly contaminated industrial soil using surfactant enhanced soil washing[J].Physics & Chemistry of the Earth,2012,37-39:30-36 10.1016/j.pce.2011.02.003
    [6] DERMONT G, BERGERON M, MERCIER G, et al.Soil washing for metal removal: A review of physical/chemical technologies and field applications[J].Journal of Hazardous Materials,2008,152(1):1-31 10.1016/j.jhazmat.2007.10.043
    [7] ELGHDALGREN K, ARWIDSSON Z, CAMDZIJA A, et al.Laboratory and pilot scale soil washing of PAH and arsenic from a wood preservation site: Changes in concentration and toxicity[J].Journal of Hazardous Materials,2009,172(2/3):1033-1040 10.1016/j.jhazmat.2009.07.092
    [8] 尹雪, 陈家军, 吕策. 螯合剂复配对实际重金属污染土壤洗脱效率影响及形态变化特征[J]. 环境科学,2014,35(2):733-739
    [9] POCIECHA M, LESTAN D.Novel EDTA and process water recycling method after soil washing of multi-metal contaminated soil[J].Journal of Hazardous Materials,2012,201-202:273-279 10.1016/j.jhazmat.2011.11.092
    [10] POCIECHA M, KASTELEC D, LESTAN D.Electrochemical EDTA recycling after soil washing of Pb, Zn and Cd contaminated soil[J].Journal of Hazardous Materials,2011,192(2):714-721 10.1016/j.jhazmat.2011.05.077
    [11] 刘霞, 王建涛, 张萌,等. 螯合剂和生物表面活性剂对Cu、Pb污染塿土的淋洗修复[J]. 环境科学,2013,34(4):1590-1597
    [12] YAN D Y S, LO I M C.Enhanced multi-metal extraction with EDDS of deficient and excess dosages under the influence of dissolved and soil organic matter[J].Environmental Pollution,2011,159(1):78-83 10.1016/j.envpol.2010.09.021
    [13] 胡忻, 罗璐瑕, 陈逸珺. 生物可降解的螯合剂EDDS提取城市污泥中Cu,Zn,Pb和Cd[J]. 环境科学研究,2007,20(6):110-114
    [14] HAUSER L, TANDY S, RAINER SCHULIN A, et al.Column extraction of heavy metals from soils using the biodegradable chelating agent EDDS[J].Environmental Science & Technology,2005,39(17):6819-6824 10.1021/es050143r
    [15] 冯静, 张增强, 李念,等. 铅锌厂重金属污染土壤的螯合剂淋洗修复及其应用[J]. 环境工程学报,2015,9(11):5617-5625 201
    [16] 陈亚慧, 李君, 王明新,等.EGTA和酒石酸对蓖麻Cd胁迫与积累的调控作用[J]. 西北植物学报,2014,34(5):1025-1031
    [17] 李雅嫔. 超声及酸化处理与EDTA联合工艺对重金属污染土壤的淋洗效果研究[D]. 保定:河北农业大学,2014
    [18] LEUNG A O W, DUZGORNENAYDIN N S, CHEUNG K C, et al.Heavy metals concentrations of surface dust from e-waste recycling and its human health implications in southeast China[J].Environmental Science & Technology,2008,42(7):2674-2680 10.1021/es071873x
    [19] KAZI T G, JAMALI M K, SIDDIQUI A, et al.An ultrasonic assisted extraction method to release heavy metals from untreated sewage sludge samples[J].Chemosphere,2006,63(3):411-420 10.1016/j.chemosphere.2005.08.056
    [20] KAZI T G, JAMALI M K, ARAIN M B, et al.Evaluation of an ultrasonic acid digestion procedure for total heavy metals determination in environmental and biological samples[J].Journal of Hazardous Materials,2009,161(2/3):1391-1398 10.1016/j.jhazmat.2008.04.103
    [21] WANG J P, CHEN Y Z, WANG Y, et al.Optimization of the coagulation-flocculation process for pulp mill wastewater treatment using a combination of uniform design and response surface methodology[J].Water Research,2011,45(17):5633-5640 10.1016/j.watres.2011.08.023
    [22] AHMAD A L, ISMAIL S, BHATIA S.Optimization of coagulation-flocculation process for palm oil mill effluent using response surface methodology[J].Environmental Science & Technology,2005,39(8):2828-2834 10.1021/es0498080
    [23] 薛腊梅, 刘志超, 尹颖,等. 微波强化EDDS淋洗修复重金属污染土壤研究[J]. 农业环境科学学报,2013,32(8):1552-1557
    [24] 金山. 白三叶对镉污染土壤的修复潜力研究[D]. 咸阳:西北农林科技大学,2013 咸阳
    [25] 张春雷, 费小通, 李婷,等. 利用超声波辅助去除污染土壤中重金属的研究[J]. 环境科学与技术,2014,36(s1):121-124
    [26] YANG R X, LUO C L, ZHANG G, et al.Extraction of heavy metals from e-waste contaminated soils using EDDS[J].Journal of Environmental Sciences,2012,24(11):1985-1994 10.1016/S1001-0742(11)61036-X
    [27] HAKANSON L.An ecological risk index for aquatic pollution control:A sediment logical approach [J].Water Research,1980,14(8):975-1001 10.1016/0043-1354(80)90143-8
    [28] 中国环境监测总站. 中国土壤元素背景值[M]. 北京:中国环境科学出版社,1990
    [29] 李一蒙, 马建华, 刘德新,等. 开封城市土壤重金属污染及潜在生态风险评价[J]. 环境科学,2015,36(3):1037-1044
    [30] 吴海健, 王建新, 黄建明, 等. 星点设计-效应面法优化柘树提取物片剂处方[J]. 复旦学报(医学版),2008,35(3):363-368
    [31] DIJKSTRA J J, MEEUSSEN J C L, COMANS R N J, et al.Leaching of heavy metals from contaminated soils:An experimental and modeling study[J].Environmental Science & Technology,2004,38(16):4390-4395 10.1021/es049885v
  • 加载中
计量
  • 文章访问数:  2457
  • HTML全文浏览数:  2055
  • PDF下载数:  394
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-06-18

超声强化EDDS/EGTA淋洗修复重金属污染土壤

  • 1. 常州大学环境与安全工程学院,常州 213164
基金项目:

江苏省政策引导类计划(产学研合作)-前瞻性联合研究项目(BY2015027-08)

江苏省高校“青蓝工程”培养对象资助项目

摘要: 采用响应面法中的Box-Behnken实验设计,研究了超声强化N,N'-乙二胺二琥珀酸(EDDS)和乙二醇双(2-氨基乙基醚)四乙酸(EGTA)复合淋洗对土壤中Cu、Zn、Pb 和Cd 等4种重金属的去除效果,拟合了各重金属去除率、潜在生态风险指数削减率与EDDS投加量、EGTA投加量、超声功率和初始pH等淋洗条件之间的关系,模拟值与观测值相关性高,模拟精度较高。EGTA在较广pH范围对高生理毒性的Cd具有较强的洗脱效果,酸性条件下可有效洗脱Zn;Cu去除率在酸性条件下随着EDDS投加量的增加而显著提高,Pb去除率则在碱性条件随着EDDS投加量的增加而显著提高。基于模型优化结果的验证实验显示,当EDDS/重金属摩尔质量比为0.81、EGTA/重金属摩尔质量比为3.92、超声功率为569.85 W、pH为3.95时,潜在生态风险指数削减率最大,达到86.05%,Cu、Zn、Pb和Cd去除率分别为72.48%、62.40%、59.25%和87.45%,与模型拟合结果偏差较小,表明模型具有较好的拟合和预测能力。

English Abstract

参考文献 (31)

目录

/

返回文章
返回