en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
付昆明, 张杰, 曹相生, 等. 曝气量对不同填料CANON反应器运行效率的影响[J]. 化工学报, 2010, 61(2): 496-503.
参考文献 2
熊鸿斌, 夏晓宇, 王玉芳, 等. 低C/N值城市污水处理厂出水达标的运行条件优化[J]. 中国给水排水, 2013, 29(1): 92-96.
参考文献 3
付昆明, 付国, 左早荣. 厌氧氨氧化技术应用于市政污水处理的前景分析[J]. 中国给水排水, 2015, 31(4): 8-13.
参考文献 4
ISHIIK, FUJITANIH, SOHK, et al. Enrichment and physiological characterization of a cold-adapted nitrite-oxidizing Nitrotoga sp. from an eelgrass sediment[J]. Applied and Environmental Microbiology, 2017, 83(14): 1-14.
参考文献 5
MAIXNERF, NOGUERAD R, ANNESERB, et al. Nitrite concentration influences the population structure of Nitrospira-like bacteria[J]. Environmental Microbiology, 2006, 8(8):1487-1495.
参考文献 6
MANSERR, GUJERW, SIEGRISTH. Consequences of mass transfer effects on the kinetics of nitrifiers[J]. Water Research, 2005, 39(19): 4633-4642.
参考文献 7
BLACKBURNER, VADIVELUV M, YUANZ, et al. Kinetic characterization of an enriched Nitrospira culture with comparison to Nitrobacter[J]. Water Research, 2007, 41(14): 3033-3042.
参考文献 8
FUJITANIH, AOIY, TSUNEDAS. Selective enrichment of two different types of Nitrospira-like nitrite-oxidizing bacteria from a wastewater treatment plant[J]. Microbes and Environments, 2013, 28(2): 236-243.
参考文献 9
WUJ, ZHANGY, ZHANGM, et al. Effect of nitrifiers enrichment and diffusion on their oxygen half-saturation value measurements[J]. Biochemical Engineering Journal, 2017, 123: 110-116.
参考文献 10
COURTENSE N P, DE CLIPPELEIRH, VLAEMINCKS E, et al. Nitric oxide preferentially inhibits nitrite oxidizing communities with high affinity for nitrite[J]. Journal of Biotechnology, 2015, 193: 120-122.
参考文献 11
PARKM, PARKH, CHANDRANK. Molecular and kinetic characterization of planktonic Nitrospira spp. selectively enriched from activated sludge[J]. Environmental Science & Technology, 2017, 51(5): 2720-2728.
参考文献 12
LEYVA-DÍAZJ C, CALDERÓNK, RODRÍGUEZF A, et al. Comparative kinetic study between moving bed biofilm reactor-membrane bioreactor and membrane bioreactor systems and their influence on organic matter and nutrients removal[J]. Biochemical Engineering Journal, 2013, 77: 28-40.
参考文献 13
CRUVELLIERN, POUGHONL, CREULYC, et al. Growth modelling of Nitrosomonas europaea ATCC® 19718 and Nitrobacter winogradskyi ATCC® 25391: A new online indicator of the partial nitrification[J]. Bioresource Technology, 2016, 220:369-377.
参考文献 14
CIUDADG, WERNERA, BORNHARDTC, et al. Differential kinetics of ammonia-and nitrite-oxidizing bacteria: A simple kinetic study based on oxygen affinity and proton release during nitrification[J]. Process Biochemistry, 2006, 41(8): 1764-1772.
参考文献 15
NOWKAB, DAIMSH, SPIECKE. Comparison of oxidation kinetics of nitrite-oxidizing bacteria: Nitrite availability as a key factor in niche differentiation[J]. Applied and Environmental Microbiology, 2015, 81(2): 745-753.
参考文献 16
RONGSAYAMANONTC, LIMPIYAKORNT, LAWB, et al. Relationship between respirometric activity and community of entrapped nitrifying bacteria: Implications for partial nitrification[J]. Enzyme and Microbial Technology, 2010, 46(3/4):229-236.
参考文献 17
姚倩, 彭党聪, 赵俏迪, 等. 活性污泥中硝化螺菌(Nitrospira)的富集及其动力学参数[J]. 环境科学, 2017, 38(12): 5201-5207.
参考文献 18
KIMD, KIMS. Effect of nitrite concentration on the distribution and competition of nitrite-oxidizing bacteria in nitratation reactor systems and their kinetic characteristics[J]. Water Research, 2006, 40(5): 887-894.
参考文献 19
NOGUEIRAR, MELOL F. Competition between Nitrospira spp. and Nitrobacter spp. in nitrite-oxidizing bioreactors[J]. Biotechnology and Bioengineering, 2006, 95(1):169-175.
参考文献 20
USHIKIN, JINNOM, FUJITANIH, et al. Nitrite oxidation kinetics of two Nitrospira strains: The quest for competition and ecological niche differentiation[J]. Journal of Bioscience and Bioengineering, 2017, 123(5): 581-589.
参考文献 21
CÉBRONA, GARNIERJ. Nitrobacter and Nitrospira genera as representatives of nitrite-oxidizing bacteria: Detection, quantification and growth along the lower Seine River (France) [J]. Water Research, 2005, 39(20): 4979-4992.
参考文献 22
KOCHH, LÜCKERS, ALBERTSENM, et al. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira[J]. Proceedings of the National Academy of Sciences, 2015, 112(36): 11371-11376.
参考文献 23
HUANGZ, GEDALANGAP B, ASVAPATHANAGULP, et al. Influence of physicochemical and operational parameters on Nitrobacter and Nitrospira communities in an aerobic activated sludge bioreactor[J]. Water Research, 2010, 44(15): 4351-4358.
参考文献 24
于莉芳, 杜倩倩, 傅学焘, 等. 城市污水中硝化菌群落结构与性能分析[J]. 环境科学, 2016, 37(11): 4366-4371.
参考文献 25
任武昂. 城市污水输送、处理过程中氮组分的迁变特性及转化规律研究[D]. 西安: 西安建筑科技大学, 2015.
参考文献 26
YUL, LIR, DELATOLLAR, et al. Natural continuous influent nitrifier immigration effects on nitrification and the microbial community of activated sludge systems[J]. Journal of Environmental Sciences, 2018, 74: 159-167.
参考文献 27
JAUFFURS, ISAZADEHS, FRIGOND. Should activated sludge models consider influent seeding of nitrifiers? Field characterization of nitrifying bacteria[J]. Water Science & Technology, 2014, 70(9): 1526-1532.
参考文献 28
曾薇, 张丽敏, 王安其, 等. 污水处理系统中硝化菌的菌群结构和动态变化[J]. 中国环境科学, 2015, 35(11): 3257-3265.
参考文献 29
刘国华, 陈燕, 范强, 等. 溶解氧对活性污泥系统的脱氮效果和硝化细菌群落结构的影响[J]. 环境科学学报, 2016, 36(6): 1971-1978.
参考文献 30
ABZAZOUT, ARAUJOR M, AUSETM, et al. Tracking and quantification of nitrifying bacteria in biofilm and mixed liquor of a partial nitrification MBBR pilot plant using fluorescence in situ hybridization[J]. Science of the Total Environment, 2016, 541: 1115-1123.
参考文献 31
LEENENE J T M, VAN BOXTELA M G A, ENGLUNDG, et al. Reduced temperature sensitivity of immobilized Nitrobacteragilis cells caused by diffusion limitation[J]. Enzyme and Microbial Technology, 1997, 20(8): 573-580.
参考文献 32
PERSSONF, SULTANAR, SUAREZM, et al. Structure and composition of biofilm communities in a moving bed biofilm reactor for nitritation-anammox at low temperatures[J]. Bioresource Technology, 2014, 154: 267-273.
参考文献 33
POOTV, HOEKSTRAM, GELEIJNSEM A A, et al. Effects of the residual ammonium concentration on NOB repression during partial nitritation with granular sludge[J]. Water Research, 2016, 106: 518-530.
参考文献 34
FANGF, NIB, LIX, et al. Kinetic analysis on the two-step processes of AOB and NOB in aerobic nitrifying granules[J]. Applied Microbiology and Biotechnology, 2009, 83(6): 1159-1169.
参考文献 35
ISANTAE, REINOC, CARRERAJ, et al. Stable partial nitritation for low-strength wastewater at low temperature in an aerobic granular reactor[J]. Water Research, 2015, 80: 149-158.
参考文献 36
ZHUT, XUB, WUJ. Experimental and mathematical simulation study on the effect of granule particle size distribution on partial nitrification in aerobic granular reactor[J]. Biochemical Engineering Journal, 2018, 134: 22-29.
参考文献 37
PARKS, BAEW. Modeling kinetics of ammonium oxidation and nitrite oxidation under simultaneous inhibition by free ammonia and free nitrous acid[J]. Process Biochemistry, 2009, 44(6): 631-640.
参考文献 38
PEDROUSOA, VAL DEL RÍO Á, MORALESN, et al. Nitrite oxidizing bacteria suppression based on in-situ free nitrous acid production at mainstream conditions[J]. Separation and Purification Technology, 2017, 186: 55-62.
参考文献 39
KIMD, LEED, KELLERJ. Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH[J]. Bioresource Technology, 2006, 97(3): 459-468.
参考文献 40
VADIVELUV M, KELLERJ, YUANZ. Effect of free ammonia on the respiration and growth processes of an enriched Nitrobacter culture[J]. Water Research, 2007, 41(4): 826-834.
参考文献 41
POLLICEA, TANDOIV, LESTINGIC. Influence of aeration and sludge retention time on ammonium oxidation to nitrite and nitrate[J]. Water Research, 2002, 36(10): 2541-2546.
参考文献 42
WUJ, HEC, VAN LOOSDRECHTM C M, et al. Selection of ammonium oxidizing bacteria (AOB) over nitrite oxidizing bacteria (NOB) based on conversion rates[J]. Chemical Engineering Journal, 2016, 304: 953-961.
参考文献 43
WUC, PENGY, WANGS, et al. Effect of sludge retention time on nitrite accumulation in real-time control biological nitrogen removal sequencing batch reactor[J]. Chinese Journal of Chemical Engineering, 2011, 19(3): 512-517.
参考文献 44
RONGSAYAMANONTC, LIMPIYAKORNT, KHANE. Effects of inoculum type and bulk dissolved oxygen concentration on achieving partial nitrification by entrapped-cell-based reactors[J]. Bioresource Technology, 2014, 164: 254-263.
参考文献 45
CHENZ, WANGX, YANGY, et al. Partial nitrification and denitrification of mature landfill leachate using a pilot-scale continuous activated sludge process at low dissolved oxygen[J]. Bioresource Technology, 2016, 218: 580-588.
参考文献 46
BAOP, WANGS, MA B, et al. Achieving partial nitrification by inhibiting the activity of Nitrospira-like bacteria under high-DO conditions in an intermittent aeration reactor[J]. Journal of Environmental Sciences, 2017, 56: 71-78.
参考文献 47
WETTB, HELLM, NYHUISG, et al. Syntrophy of aerobic and anaerobic ammonia oxidisers[J]. Water Science & Technology, 2010, 61(8): 1915-1922.
参考文献 48
孟婷, 杨宏. 活性污泥快速实现短程硝化及稳定高效运行[J]. 中国给水排水, 2017, 33(15): 1-5.
参考文献 49
ALMEIDAR G B D, SANTOSC E D D, LÜDERST C, et al. Nitrogen removal by simultaneous partial nitrification, anammox and denitrification (SNAD) in a structured-bed reactor treating animal feed processing wastewater: Inhibitory effects and bacterial community[J]. International Biodeterioration & Biodegradation, 2018, 133: 108-115.
参考文献 50
SAYAVEDRA-SOTOL, FERRELLR, DOBIEM, et al. Nitrobacter winogradskyi transcriptomic response to low and high ammonium concentrations[J]. FEMS Microbiology Letters, 2015, 362(3): 1-7.
参考文献 51
王会芳, 付昆明, 左早荣, 等. 水力停留时间和溶解氧对陶粒CANON反应器的影响[J]. 环境科学, 2015, 36(11): 4161-4167.
参考文献 52
付昆明, 张杰, 曹相生, 等. 曝气量对不同填料CANON反应器运行效率的影响[J]. 化工学报,2010, 61(2): 496-503.
参考文献 53
PÉREZJ, LOTTIT, KLEEREBEZEMR, et al. Outcompeting nitrite-oxidizing bacteria in single-stage nitrogen removal in sewage treatment plants: A model-based study[J]. Water Research, 2014, 66: 208-218.
参考文献 54
孙延芳, 韩晓宇, 张树军, 等. 颗粒+絮体污泥CANON工艺的启动与SRT影响研究[J]. 环境科学, 2017, 38(2): 672-678.
参考文献 55
AKABOCIT R V, GICHF, RUSCALLEDAM, et al. Assessment of operational conditions towards mainstream partial nitritation-anammox stability at moderate to low temperature: Reactor performance and bacterial community[J]. Chemical Engineering Journal, 2018, 350: 192-200.
参考文献 56
李冬, 张杰. 城市污水自养脱氮工艺研究[M]. 中国建筑工业出版社, 2017.
参考文献 57
付昆明, 周厚田, 苏雪莹, 等. 生物膜短程硝化系统的恢复及其转化为CANON工艺的过程[J]. 环境科学, 2017, 38(4): 1536-1543.
参考文献 58
WETTB, MURTHYS, TAKÁCSI, et al. Key parameters for control of DEMON deammonification process[J]. Water Practice, 2007, 1(5): 1-11.
目录 contents

    摘要

    为维持短程硝化稳定,保证亚硝酸盐高效积累,需要对污水处理系统亚硝酸盐氧化菌(NOB)的性质进行深入了解。分别对Nitrospira以及Nitrobacter的动力学参数,以及在活性污泥系统、生物膜系统、颗粒污泥系统中2菌属特性进行比较。经分析后认为,Nitrospira相对于Nitrobacter比增长速率较低,对O2,NO2-底物亲和性较好,适宜生长于低浓度环境中,是A2/O、短程硝化-厌氧氨氧化工艺中的主要NOB菌属;Nitrobacter则适宜在高浓度环境中生长。在颗粒污泥系统中,NOB主要处于污泥内部,由于缺乏O2,NO2-更容易被淘汰出反应器。通过对比短程硝化主要控制参数,认为NOB的抑制策略包括:在活性污泥系统中维持合理的污泥龄(SRT)以及游离氨(FA)浓度;在生物膜系统中对溶解氧(DO)以及水力停留时间(HRT)进行联合控制;在颗粒污泥系统中维持适量剩余NH4+-N,并淘洗出掺杂其中的絮状污泥。此外,利用“饱食饥饿”效应间歇曝气并维持较低的曝停比同样有利于阻止亚硝酸盐被NOB进一步氧化,保证短程硝化稳定运行。

    Abstract

    For purpose of maintaining the stability of nitritation, ensuring the efficiency of nitrite accumulation, it’s essential to have insight into the properties of ordinary nitrite oxidizing bacteria (NOB) species in wastewater treatment systems. The kinetic parameters of Nitrospira and Nitrobacter, and the characteristics of the two genus bacteria in the activated sludge system, biofilm system, and granular sludge system were compared. Nitrospira had a lower specific growth rate and a better affinity for O2 and NO2- substrates than Nitrobacter. The former bacteria were suitable for growth in low concentration of substrates, which was considered as the main NOB genus in A2/O and nitritation-anammox process, while the latter ones were suitable for growth in high concentration of substrates. In granular sludge system, NOB mainly existed in the interior of the sludge, and were easy to be eliminated from the reactor due to the lack of O2, NO2- substrates. Through comparing the main control parameters for nitritation, the NOB inhibition strategies were proposed as: maintaining a reasonable sludge retention time (SRT) and free ammonia (FA) concentration in activated sludge system, adjusting dissolved oxygen (DO) and hydraulic retention time (HRT) systematically in biofilm system, sustaining an appropriate amount of residual NH4+-N, and washing out the flocculation from granular sludge. Furthermore, using intermittent aeration based on “cyclic feeding” and maintaining lower ratio of aeration and anaerobic time were propitious to prevent further oxidation of nitrite by NOB, trigger the stability of nitritation.

    相对于传统的硝化/反硝化工艺而言,全程自养脱氮(completely autotrophic nitrogen removal over nitrite, CANON)工艺为污水脱氮过程提供了一种新思路。CANON工艺几乎无需有机碳源、节省57.5%曝气量的特点可以减少污水处理厂的药剂投加量以及能源消[1],具有可持续性。我国市政污水C/N比通常难以满足《室外排水设计规范》(GB 50014-2006)推荐值4.0[2]的要求而导致需要投加外加碳源,CANON工艺可以避免这一点,故具有广阔的应用前景。然而,由于亚硝酸盐氧化菌(nitrite-oxidizing bacteria, NOB)与氨氧化菌(ammonium-oxidizing bacteria, AOB)是共生关系,两者生长所需的环境条件较为相似,当系统存在AOB时往往伴有NOB的生长。若NOB大量增殖,NO2-被氧化为NO3-,将制约CANON工艺的实际应用。因此,如何在保证AOB活性的同时对NOB的活性进行抑制,是CANON工艺能够高效脱氮的基础和关键。

    很多研究者对短程硝化的实现条件进行了研究,但除了在中温条件下SHARON(single reactor for high ammonium removal over nitrite)工艺已投入实际工程应用之外,还没有其他具体应用的工程实[3],部分有关NOB抑制策略的研究结果也不一致。目前,SHARON工艺经常与ANAMMOX工艺组合成短程硝化-厌氧氨氧化工艺,但是,在实际应用过程中,SHARON工艺往往不具备中温条件,而导致短程硝化失效。而短程硝化这一基石若被忽视,厌氧氨氧化将无从谈起。因此,如何实现稳定的短程硝化仍是目前需要深入研究的问题。本研究以NOB为重点对其特性进行介绍,并探讨其抑制策略。

  • 1 NOB的微生物特性

    1

    NOB主要包含硝化杆菌属Nitrobacter、硝化螺菌属Nitrospira、硝化球菌属Nitrococcus以及硝化刺菌属Nitrospina[4]。其中NitrobacterNitrospira在污水处理系统中最为常见。两者能以氧为电子受体,将NO2-氧化为NO3-并获得能量。两菌属最适环境条件具有一定差异,可在不同环境条件下交替成为优势菌种。

    动力学参数直接反映了微生物增殖能力以及底物亲和能力,对于NitrobacterNitrospira而言,分别为r型和K型。以r型为增殖方式的Nitrobacter比增长速率μ以及半速率常数Ks均明显高于K型增殖方式的Nitrospira

    不同研究得出部分种属NOB的动力学参数见表1。其中Nitrobacter增殖更加迅速,但对底物的亲和性较差,该菌属在底物浓度较高的环境当中可以通过快速增长形成竞争优势。相应地,Nitrospira增殖速率明显较低,但其具有更好的底物亲和性,当系统内营养物质较为匮乏时,可以充分利用仅存的底物,完成细胞生长以及细胞维持过程。

    表1 NitrospiraNitrobacter动力学参数

    Table 1 Kinetic parameters of Nitrospira and Nitrobacter

    菌种μmax/ d-1 K s , O 2 / ( mg·L-1) K s , N O 2 / (mg·L-1)
    Nitrospira0.75[5]0.47[6]0.90±0.07[7]
    Nitrospira0.22[8]0.26~0.45[9]0.70±0.10[10]
    Nitrospira0.69±0.10[11]0.33±0.14[11]0.52±0.14[11]
    Nitrobacter1.84[12]0.43±0.08[7]1.30±0.08[7]
    Nitrobacter0.58±0.19[13]1.40[14]1.50±0.09[10]
    Nitrobacter1.85[15]0.35~0.96[16]2.25±0.51[15]

    姚倩[17]对污水厂好氧池污泥培养120 d,维持混合液NO2-浓度低于2 mg·L-1,同时将溶解氧(dissolved oxygen, DO)值控制在3~4 mg·L-1时,荧光原位杂交(fluorescence in situ hybridization, FISH)分析显示,Nitrospira占活性污泥微生物总量的75%,Nitrobacter仅占微生物总量的0.1%。FUJITANI[8]控制连续流反应器NO2-浓度低于10 mg·L-1,在总计359 d培养时间中,Nitrospira在全部微生物中最高占88.3%。KIM[18]在维持NO2-负荷为0.29 kg·(m3·d)-1时,Nitrospira占微生物总数的59%,Nitrobacter仅占5%;而在NO2-负荷为1.0 kg·(m3·d)-1时,则以Nitrobacter为优势菌种,占64%,Nitrospira仅占3%。NOGUEIRA[19]将NO2-浓度短时间内由10 mg·L-1提高至80 mg·L-1,原先占据优势的Nitrospira逐渐被Nitrobacter取代,且该变化不可恢复。上述实验结论表明,环境条件对于2种NOB菌属具有一定的选择性,当NO2-浓度较低时,Nitrospira为主要NOB菌属。

    针对2种NOB菌属在增殖性能以及底物亲和性能的差异性方面,有研究指出:Nitrobacter处于底物匮乏环境时会形成聚集体以减少合成以及分解代谢过程的能量损失,传质能力随着聚集体的形成相应降低,微生物生命活动以细胞维持为主;而Nitrospira则是在浓度高峰期时形成聚集体,在低底物环境时生命活动更加旺[19]。USHIKI[20]针对NOB的基因组进行分析,Nitrospira含有编码细胞色素氧化酶bd基因,Nitrobacter则包含编码细胞色素氧化酶c基因,其中氧化酶bd在氧浓度低时会被激活,使细菌在限氧环境下得以完成细胞生长过程。据此认为,电子传递链末端氧化酶的差异是2种NOB存在氧亲和力差异的主要原因。

    不同的动力学参数导致2种NOB倾向于不同的生长环境。在天然水体当中,Nitrobacter在土壤或水体沉积物当中的丰度为Nitrospira的200~500倍,而Nitrospira多存在于径流当[21]。针对市政污水厂而言,污水几乎不含NO2-底物,在常规硝化反硝化工艺当中,NO2-于好氧池内生成之后立刻被转化为NO3-,因此,NO2-浓度常年维持在极为有限的水平。这也在一定程度上说明了Nitrospira适合生长在天然水体、污水厂主流系统等低浓度底物环境中。

  • 2 不同系统中的NOB特性

    2
  • 2.1 活性污泥系统NOB特性

    2.1

    活性污泥系统在污水处理中十分常见,主要通过污泥回流维持系统生物量稳定。微生物在各构筑物间循环流动的过程中所处环境条件各异,其环境适应性的优劣是决定其能否成为优势菌种的重要原因。

    部分NOB具有代谢有机物的能力,Nitrospira无论处于好氧还是厌氧环境都能利用甲酸盐生存,其细胞生长过程与NO2-氧化过程相互独立,不会因NO2-浓度过低而受到限制,在O2、NO2-浓度受限环境下具有更好的适应[22]。HUANG[23]对好氧池污泥进行长时间观察后得知,在好氧池内,当NO2-在0~4 mg·L-1之间波动时,Nitrospira丰度没有明显变化,而Nitrobacter的丰度呈上升趋势,同样说明Nitrospira增殖过程与NO2-浓度没有直接联系,在NO2-浓度受限条件下可保持稳定的增殖能力。

    KOCH[22]通过实验发现,Nitrospira中的一种N. moscoviensis可将污水中的尿素水解为NH4+和CO2,反应过程如式(1)所示:

    C O ( N H 2 ) 2 + H 2 O + 2 H + C O 2 + 2 N H 4 +
    (1)

    AOB利用尿素分解产物NH4+进而为Nitrospira提供底物NO2-,即两者之间可以形成互利共生的交哺关系。这种间接利用尿素作为能量来源的能力使Nitrospira在与其他同样以NO2-为底物的微生物,如其他种属NOB、反硝化菌以及厌氧氨氧化菌对NO2-底物的争夺当中具有竞争优势。相对于异养菌而言,NOB生长更为缓慢,在市政污水源源不断进入处理设施的同时也伴有NOB的流入,这种接种与补充过程是污水厂NOB的重要来源。于莉芳[24]通过测定NO2-氧化速率对西安市第二、第三污水厂NOB群落与市政污水所含NOB的关系进行估算,两水厂中NOB的连续接种强度分别为0.24、0.11 g·(g·d)-1,并认为污水输送过程中存在有跌水或明渠等情况,一定程度上为NOB在管网中增殖创造有利条件。生活污水中有70%的氮元素来自于尿液,新鲜尿液绝大部分的氮元素以尿素形式存[25],在Nitrospira的代谢作用下可被转化为NH4+。排水管网同样含有AOB,接种强度约为0.08 g·(g·d)-1[26]。在污水逐渐流向水厂的过程中,Nitrospira将污水中的尿素水解为NH4+,供给AOB利用。污水流入至水厂后经过4.5 h左右的好氧运行,Nitrospira氧气利用速率增至最高水平,NO2-氧化能力得以完全恢[27]。市政管网具有一定的尿素浓度,而Nitrospira具有尿素代谢能力,将在管网系统中大量增殖,Nitrospira得以成为污水厂中NO2-氧化过程的主要承担者。因此,除了Nitrospira最适环境与污水厂运行工况相贴合之外,还与管网的选择作用密不可分。

    曾薇[28]在采用A2/O工艺的市政污水处理系统当中发现,Nitrospira的丰度高于Nitrobacter一个数量级,且同样高于AOB或其他种属NOB。此外,由于温度的变化直接导致水中氧含量变化。在夏季,DO含量在全年当中平均较低,此时会出现Nitrobacter丰度为0的状况。在冬季,由于DO含量相对回升,会引起Nitrobacter逐渐增殖,在全部NOB当中可占4.3%。此外,当DO变化时,Nitrospira的群落结构仍可保持稳定,而Nitrobacter群落结构随着DO降低发生明显变[29]。可见,在DO不断变动的A2/O工艺中,Nitrospira菌属在数量上具有优势,同时其群落结构更为稳定。

  • 2.2 生物膜系统NOB特性

    2.2

    生物膜系统当中,存在载体支撑微生物的生长是其相对于活性污泥系统的显著区别。ABZAZOU[30]对短程硝化MBBR微生物数量进行研究,DAPI染色显示生物膜中AOB丰度为4.16×108 cells·mL-1,高于混合液2个数量级。而NOB不论是处于生物膜或是混合液中,其丰度均较为相近,如Nitrospira在生物膜中丰度为2.70×107 cells·mL-1,仅为混合液中丰度的2倍。不难看出,AOB更倾向于生长在有载体的环境中,而NOB则随着出水具有不断流失的可能性。

    LEENEN[31]分别对低温时Nitrobacter悬浮和附着生长状态下的NO2-消耗速率进行测定,当温度为10 ℃时,附着态Nitrobacter的NO2-消耗速率为30 ℃时的70%,而悬浮生长状态下仅为30 ℃时的15%。PERSSON[32]针对不同温度下短程硝化-厌氧氨氧化生物膜反应器进行研究,当MBBR的NO2-平均浓度低于20 mg·L-1且温度为19 ℃时,NO3-产量与总氮去除量之比为0.14,而在温度为10 ℃时,该比值为0.42,且Nitrobacter的16S rRNA拷贝数均高于Nitrospira。因此,在附着状态下,Nitrobacter对低温环境具有一定耐受能力,加大了低温环境实现短程硝化的难度。

  • 2.3 颗粒污泥系统NOB特性

    2.3

    颗粒污泥作为一种无须载体支撑的颗粒状微生物聚集体,与传统生物膜相比一定程度上具有相似的性质。当细菌以颗粒污泥的形式存在于污水处理系统中时,由于不同种细菌之间生长能力的差异,不同细菌处在颗粒污泥中的不同位置,可以观察到污泥中细菌的分层现象。

    POOT[33]对不同运行工况下的短程硝化反硝化工艺颗粒污泥进行原位荧光杂交分析。其结果显示,不论出水NO3-浓度为5 mg·L-1或是25 mg·L-1,AOB均处于污泥表层,在紧贴AOB层的里侧是多数NOB的所在位置;另有少数NOB与AOB相互混杂,结构较为松散的ANAMMOX细菌位于污泥深层。FANG[34]针对硝化颗粒污泥进行FISH分析后得出相似结论,并发现AOB占硝化菌群75%~85%。很多研究均表明,NOB即使活性受到抑制时依旧有能力在污水处理系统当中保持丰度稳定,ISANTA[35]联合使用FISH以及共聚焦激光扫描显微技术分析指出,在CANON工艺的温度由20 ℃降低至12.5 ℃的过程中,NOB在AOB、NOB以及ANAMMOX细菌的总体中,稳定占18%,且全部为Nitrobacter,无Nitrospira检出。且当温度为12.5 ℃时,需要180 d才可将NOB的占比淘洗至1%。由于AOB的比增长速率大于NOB,同时具有更好的氧亲和性,其占据颗粒污泥表面抢先利用水中的溶解氧,更高的比增长速率使AOB占据更大的比表面积从而形成一层结构密实的外壳包裹住NOB。颗粒内部受传质阻力的影响形成氧浓度梯度,位于颗粒较深层的NOB由于氧浓度有限从而活性受到抑制,同时由于AOB的保护作用减少了NOB受到水流剪切应力而被冲刷至系统外的机会。

    对于颗粒污泥反应器而言,不同污泥粒径对NOB的抑制程度并不完全相同。有研究指出,颗粒污泥粒径低于50 μm时亚硝酸化率约为75%,而当粒径超过100 μm时该值可增至90%[36]。根据斯托克斯公式,当颗粒密度不变时颗粒沉淀速度与粒径平方呈正比。因此,可通过设定一合理的沉淀时间仅针对大颗粒进行截留,将含有高活性NOB的小颗粒淘洗至处理系统外,以阻止NO2-被进一步氧化。因此,颗粒污泥之所以具有较为理想的短程硝化效果,原因之一是AOB居于外层,NOB居于内层的结构形式能够限制NOB的生长;同时对于一体化的颗粒污泥而言,大量的ANAMMOX菌导致AOB产生的NO2-及时被ANAMMOX菌消耗,NOB既缺乏生长基质NO2-,也缺乏电子受体O2,导致最终被淘汰出反应器。此外,通过对粒径等因素的人为控制也起到一定辅助作用。

  • 3 抑制策略研究现状

    3

    大量研究人员针对NOB与AOB的环境适应性差异,通过调节系统运行参数,如维持适量游离氨(free ammonia, FA)或游离亚硝酸(free nitrous acid, FNA)浓度;或维持较低的污泥停留时间(sludge retention time, SRT);或对DO浓度加以限制;或采用间歇曝气的方法均获得了一定的NOB抑制效果,典型研究结果见表2

    表2 NOB在不同环境下的主要抑制参数

    Table 2 Major inhibition parameters of NOB in different environments

    游离亚硝酸/( mg·L-1) [7,37,38]游离氨/( mg·L-1) [20,39,40]
    环境1环境2环境3环境1环境2环境3
    0.080.020.030.850.76.0
    污泥龄/d [41,42,43]溶解氧/( mg·L-1) [44,45,46]
    环境1环境2环境3环境1环境21)环境31)环境41)
    34.210~203.00.3~0.51.80.3

    注:1) 为间歇曝气工况,t(曝气)t(停曝)=10 min∶10 min。

    对于活性污泥系统,由于微生物均混杂于泥水混合液中,可通过主动排泥的方式制定合理的SRT,从而将NOB从处理系统中移除。水力旋流器为一种微生物分离设备,由于AOB与ANAMMOX菌形成的颗粒相对较大,而NOB颗粒较小,经离心后将与AOB以及ANAMMOX菌,这一技术解决了抑制NOB需要短SRT,而有效持留ANAMMOX菌需要长SRT之间的矛盾。WETT[47]研究发现,应用水力旋流器前后,DEMON(deammonnification)工艺中AOB的SRT由28 d缩短至9 d,ANAMMOX菌的SRT则由28 d延长至53 d。此外,维持一定的FA浓度同样有利于抑制NOB的活性。孟婷[48]对污水厂活性污泥进行接种,将FA浓度由0.3~3.0 mg·L-1提高至9.4~14.6 mg·L-1后,NO2--N积累率由11%提升至90%。ALMEIDA[49]将同步短程硝化-反硝化及厌氧氨氧化工艺中FA浓度由3.0 mg·L-1提高至9.0 mg·L-1,NO3--N产量与NH4+-N去除量之比由0.459降至0.328,NO3-产量相对降低说明NOB的活性受到抑制。 FA对NOB部分基因的表达起到调节作用,与C、N同化过程相关的基因所受到的影响尤为显著。当FA浓度处于14.8 mg·L-1时,代谢NO2-、分解糖原基因的表达过程受到抑制,表观上体现为微生物NO2-代谢速率以及运动性下降,活性降[50]

    生物膜系统相对于活性污泥系统而言,由于SRT理论值为无限长,因此,可行的抑制手段更为有限。相较于NOB而言,AOB对O2的亲和性能更强,可通过对DO进行限制减少NOB利用O2的可能性,以抑制其对NO2--N进一步氧化的过程。王会芳[51]以陶粒作为填料,维持DO浓度处于1.20~1.75 mg·L-1,当水力停留时间(hydraulic retention time, HRT)由9 h降至7 h时,生物膜CANON反应器总氮去除率由79.16%降至71.68%;而当DO超过1.75 mg·L-1时,短程硝化遭到破坏。也有研究指出,当曝气量超过35.8 m3·(m3∙h)-1时,以海绵为载体的CANON工艺,TN去除率稳定在79.4%不再增加;以改性聚乙烯为填料时,当曝气量高于6.3 m3·(m3∙h)-1时,TN去除率由77.6%剧烈下降至11.1%[52]。附着在不同类型的填料的生物膜对O2的传递性能各异,HRT或DO应控制在合适范围内,以强化生物膜污泥持留性能,改善脱氮效果。

    对于颗粒污泥系统,不同类型微生物生长在颗粒的不同位置。由于NOB处于颗粒内层,维持出水仍保持一定的NH4+-N浓度,可降低颗粒中O2的渗透深度,可减少其利用O2的机会以限制其活性。如PÉREZ[53]维持颗粒污泥系统DO恒定为1.0 mg·L-1,将出水NH4+-N浓度由3 mg·L-1增至12 mg·L-1,观察到出水NO3-由30 mg·L-1降至低于10 mg·L-1。POOT[33]维持DO为4 mg·L-1,出水NH4+-N浓度在2~5 mg·L-1之间时得到了相似的结果。此外,针对性地将絮状污泥淘洗出颗粒污泥系统同样有利于减少系统中NOB的数量。孙延芳[54]研究了同时包含颗粒及絮状污泥的CANON工艺,在不同SRT下微生物的群落结构,定量PCR结果表明:相比于维持絮状污泥SRT为30 d,在不排出絮状污泥时虽然ANAMMOX菌丰度增加了1.5倍,但NOB丰度相比增加了47倍。因此,对于絮状污泥与颗粒污泥混合的系统而言,针对絮状污泥设定合理的SRT有利于短程硝化的稳定。

    在短程硝化-厌氧氨氧化系统当中,Nitrospira在全体NOB中占据主要地[55],比增长速率为0.22~0.79 d-1[5,8,11]。相对地,AOB比增长速率为1.30~1.45 d-1[13,43]。当系统SRT较低时,NOB增殖的数量无法弥补排泥所造成的损失量,久之将从系统中被淘汰;AOB得益于较高的比增长速率仍可为系统所持留,进而实现NO2-积累。WU[43]针对不同SRT下AOB选择器内硝化细菌构成情况进行模拟。其结果显示,无论NH4+浓度在1~15 mg∙L-1内取何值,随着SRT高于6 d,NOB均可大量增殖,在硝化细菌中最高占30%。由此不难看出,较低的SRT是短程硝化稳定发生的必要条件。不论是单纯以NO2-积累为目标的短程硝化工艺或是一体式脱氮的CANON工艺,均应对SRT合理控制,为强化CANON工艺ANAMMOX细菌持留性能而对SRT过量延长将导致NOB丰度增加。

    除采用常规限氧曝气方式外,以瞬时增加水中含氧量的方式进行间歇曝气同样具有稳定的NOB抑制效果。在停止曝气的过程中,AOB以及NOB均受到氧浓度的限制,而当曝气恢复时,仅AOB具有氧化更多NH4+以获取能量的能力,NOB对该种能力并不具备。于是在恢复曝气之后的一段时间内,AOB的“饱食饥饿”特性使NH4+氧化速率高于NO2-氧化速率,形成NO2-[56]。付昆明[57]采用间歇曝气策略对流量为22.0 L·d-1连续流生物膜反应器的短程硝化过程进行恢复,控制曝气量为1.0 L·min-1,连续进气14 h,停曝时间10 h,经过3 d,出水NO2-积累率由0%增至24.5%,恢复为连续曝气后,NO2-积累率不稳定,并在随后接近为0%。此外,曝停时间比作为间歇曝气的重要控制参数,同样影响到短程硝化效果。实验表明,曝停比在1∶1时,经过22 d可将NO2-积累率由18%稳定至90%以上;而曝停比为3∶1及3∶2时,分别耗时29 d和23 d才实现上述效果。同时,曝停比在3∶2和3∶3时,可以在初始DO浓度为4.0~4.5 mg∙L-1条件下维持短程硝化的稳定性,即缩小曝停比有利于抑制NOB的活[57]。间歇曝气已投入到污水厂实际运行之中,如DEMON工艺,就是在SBR中利用短程硝化与厌氧氨氧化过程对碱度的生成与消耗,通过pH信号控制曝气的开启与关闭过程。当混合液pH升至约7.03时,开启曝气并维持DO在0.4 mg·L-1,此时主要进行短程硝化反应同时消耗碱度;当pH降低0.04后关闭曝气,主要进行ANAMMOX反应同时使混合液碱度升[58]。该运行方式一定程度上可保证所产生的NO2-尽可能用于NH4+氧化过程,并在奥地利Strass水厂投入应用。

  • 4 结论

    4

    1) NOB的2类主要菌群为NitrospiraNitrobacter,其中Nitrospira增殖方式为K式,其比增长速率较低,同时对O2,NO2-亲和性较高,适于生长在低底物浓度环境。而Nitrobacter增殖方式为r式,对底物亲和性较差,比增长速率相对较高,适于在沉积物或高浓度环境下生存。

    2) Nitrospira是市政污水处理系统中的主要NOB菌属,可通过水解尿素的能力与AOB形成交哺关系,同时具有利用甲酸盐代谢的能力。在生物膜系统中,NOB多处于混合液当中,相比于附着在填料上生长的AOB而言更容易随水流流出。在颗粒污泥系统中,NOB居于AOB的内层,由于传质阻力作用导致O2无法全部进入生物膜内层,同时由于大量ANAMMOX细菌存在,使NO2-及时被ANAMMOX细菌消耗,NOB在颗粒污泥中可利用的底物较为有限。

    3) NOB抑制策略包括:通过SRT对NOB进行筛分;维持合理的FA以及DO浓度;维持出水一定的NH4+-N浓度;适当排出颗粒污泥系统中的絮状污泥;采用间歇曝气并维持较低的曝停比。

  • 参 考 文 献

    • 1

      付昆明, 张杰, 曹相生, 等. 曝气量对不同填料CANON反应器运行效率的影响[J]. 化工学报, 2010, 61(2): 496-503.

    • 2

      熊鸿斌, 夏晓宇, 王玉芳, 等. 低C/N值城市污水处理厂出水达标的运行条件优化[J]. 中国给水排水, 2013, 29(1): 92-96.

    • 3

      付昆明, 付国, 左早荣. 厌氧氨氧化技术应用于市政污水处理的前景分析[J]. 中国给水排水, 2015, 31(4): 8-13.

    • 4

      ISHII K, FUJITANI H, SOH K, et al. Enrichment and physiological characterization of a cold-adapted nitrite-oxidizing Nitrotoga sp. from an eelgrass sediment[J]. Applied and Environmental Microbiology, 2017, 83(14): 1-14.

    • 5

      MAIXNER F, NOGUERA D R, ANNESER B, et al. Nitrite concentration influences the population structure of Nitrospira-like bacteria[J]. Environmental Microbiology, 2006, 8(8):1487-1495.

    • 6

      MANSER R, GUJER W, SIEGRIST H. Consequences of mass transfer effects on the kinetics of nitrifiers[J]. Water Research, 2005, 39(19): 4633-4642.

    • 7

      BLACKBURNE R, VADIVELU V M, YUAN Z, et al. Kinetic characterization of an enriched Nitrospira culture with comparison to Nitrobacter[J]. Water Research, 2007, 41(14): 3033-3042.

    • 8

      FUJITANI H, AOI Y, TSUNEDA S. Selective enrichment of two different types of Nitrospira-like nitrite-oxidizing bacteria from a wastewater treatment plant[J]. Microbes and Environments, 2013, 28(2): 236-243.

    • 9

      WU J, ZHANG Y, ZHANG M, et al. Effect of nitrifiers enrichment and diffusion on their oxygen half-saturation value measurements[J]. Biochemical Engineering Journal, 2017, 123: 110-116.

    • 10

      COURTENS E N P, DE CLIPPELEIR H, VLAEMINCK S E, et al. Nitric oxide preferentially inhibits nitrite oxidizing communities with high affinity for nitrite[J]. Journal of Biotechnology, 2015, 193: 120-122.

    • 11

      PARK M, PARK H, CHANDRAN K. Molecular and kinetic characterization of planktonic Nitrospira spp. selectively enriched from activated sludge[J]. Environmental Science & Technology, 2017, 51(5): 2720-2728.

    • 12

      LEYVA-DÍAZ J C, CALDERÓN K, RODRÍGUEZ F A, et al. Comparative kinetic study between moving bed biofilm reactor-membrane bioreactor and membrane bioreactor systems and their influence on organic matter and nutrients removal[J]. Biochemical Engineering Journal, 2013, 77: 28-40.

    • 13

      CRUVELLIER N, POUGHON L, CREULY C, et al. Growth modelling of Nitrosomonas europaea ATCC® 19718 and Nitrobacter winogradskyi ATCC® 25391: A new online indicator of the partial nitrification[J]. Bioresource Technology, 2016, 220:369-377.

    • 14

      CIUDAD G, WERNER A, BORNHARDT C, et al. Differential kinetics of ammonia-and nitrite-oxidizing bacteria: A simple kinetic study based on oxygen affinity and proton release during nitrification[J]. Process Biochemistry, 2006, 41(8): 1764-1772.

    • 15

      NOWKA B, DAIMS H, SPIECK E. Comparison of oxidation kinetics of nitrite-oxidizing bacteria: Nitrite availability as a key factor in niche differentiation[J]. Applied and Environmental Microbiology, 2015, 81(2): 745-753.

    • 16

      RONGSAYAMANONT C, LIMPIYAKORN T, LAW B, et al. Relationship between respirometric activity and community of entrapped nitrifying bacteria: Implications for partial nitrification[J]. Enzyme and Microbial Technology, 2010, 46(3/4):229-236.

    • 17

      姚倩, 彭党聪, 赵俏迪, 等. 活性污泥中硝化螺菌(Nitrospira)的富集及其动力学参数[J]. 环境科学, 2017, 38(12): 5201-5207.

    • 18

      KIM D, KIM S. Effect of nitrite concentration on the distribution and competition of nitrite-oxidizing bacteria in nitratation reactor systems and their kinetic characteristics[J]. Water Research, 2006, 40(5): 887-894.

    • 19

      NOGUEIRA R, MELO L F. Competition between Nitrospira spp. and Nitrobacter spp. in nitrite-oxidizing bioreactors[J]. Biotechnology and Bioengineering, 2006, 95(1):169-175.

    • 20

      USHIKI N, JINNO M, FUJITANI H, et al. Nitrite oxidation kinetics of two Nitrospira strains: The quest for competition and ecological niche differentiation[J]. Journal of Bioscience and Bioengineering, 2017, 123(5): 581-589.

    • 21

      CÉBRON A, GARNIER J. Nitrobacter and Nitrospira genera as representatives of nitrite-oxidizing bacteria: Detection, quantification and growth along the lower Seine River (France) [J]. Water Research, 2005, 39(20): 4979-4992.

    • 22

      KOCH H, LÜCKER S, ALBERTSEN M, et al. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira[J]. Proceedings of the National Academy of Sciences, 2015, 112(36): 11371-11376.

    • 23

      HUANG Z, GEDALANGA P B, ASVAPATHANAGUL P, et al. Influence of physicochemical and operational parameters on Nitrobacter and Nitrospira communities in an aerobic activated sludge bioreactor[J]. Water Research, 2010, 44(15): 4351-4358.

    • 24

      于莉芳, 杜倩倩, 傅学焘, 等. 城市污水中硝化菌群落结构与性能分析[J]. 环境科学, 2016, 37(11): 4366-4371.

    • 25

      任武昂. 城市污水输送、处理过程中氮组分的迁变特性及转化规律研究[D]. 西安: 西安建筑科技大学, 2015.

    • 26

      YU L, LI R, DELATOLLA R, et al. Natural continuous influent nitrifier immigration effects on nitrification and the microbial community of activated sludge systems[J]. Journal of Environmental Sciences, 2018, 74: 159-167.

    • 27

      JAUFFUR S, ISAZADEH S, FRIGON D. Should activated sludge models consider influent seeding of nitrifiers? Field characterization of nitrifying bacteria[J]. Water Science & Technology, 2014, 70(9): 1526-1532.

    • 28

      曾薇, 张丽敏, 王安其, 等. 污水处理系统中硝化菌的菌群结构和动态变化[J]. 中国环境科学, 2015, 35(11): 3257-3265.

    • 29

      刘国华, 陈燕, 范强, 等. 溶解氧对活性污泥系统的脱氮效果和硝化细菌群落结构的影响[J]. 环境科学学报, 2016, 36(6): 1971-1978.

    • 30

      ABZAZOU T, ARAUJO R M, AUSET M, et al. Tracking and quantification of nitrifying bacteria in biofilm and mixed liquor of a partial nitrification MBBR pilot plant using fluorescence in situ hybridization[J]. Science of the Total Environment, 2016, 541: 1115-1123.

    • 31

      LEENEN E J T M, VAN BOXTEL A M G A, ENGLUND G, et al. Reduced temperature sensitivity of immobilized Nitrobacteragilis cells caused by diffusion limitation[J]. Enzyme and Microbial Technology, 1997, 20(8): 573-580.

    • 32

      PERSSON F, SULTANA R, SUAREZ M, et al. Structure and composition of biofilm communities in a moving bed biofilm reactor for nitritation-anammox at low temperatures[J]. Bioresource Technology, 2014, 154: 267-273.

    • 33

      POOT V, HOEKSTRA M, GELEIJNSE M A A, et al. Effects of the residual ammonium concentration on NOB repression during partial nitritation with granular sludge[J]. Water Research, 2016, 106: 518-530.

    • 34

      FANG F, NI B, LI X, et al. Kinetic analysis on the two-step processes of AOB and NOB in aerobic nitrifying granules[J]. Applied Microbiology and Biotechnology, 2009, 83(6): 1159-1169.

    • 35

      ISANTA E, REINO C, CARRERA J, et al. Stable partial nitritation for low-strength wastewater at low temperature in an aerobic granular reactor[J]. Water Research, 2015, 80: 149-158.

    • 36

      ZHU T, XU B, WU J. Experimental and mathematical simulation study on the effect of granule particle size distribution on partial nitrification in aerobic granular reactor[J]. Biochemical Engineering Journal, 2018, 134: 22-29.

    • 37

      PARK S, BAE W. Modeling kinetics of ammonium oxidation and nitrite oxidation under simultaneous inhibition by free ammonia and free nitrous acid[J]. Process Biochemistry, 2009, 44(6): 631-640.

    • 38

      PEDROUSO A, VAL DEL RÍO Á, MORALES N, et al. Nitrite oxidizing bacteria suppression based on in-situ free nitrous acid production at mainstream conditions[J]. Separation and Purification Technology, 2017, 186: 55-62.

    • 39

      KIM D, LEE D, KELLER J. Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH[J]. Bioresource Technology, 2006, 97(3): 459-468.

    • 40

      VADIVELU V M, KELLER J, YUAN Z. Effect of free ammonia on the respiration and growth processes of an enriched Nitrobacter culture[J]. Water Research, 2007, 41(4): 826-834.

    • 41

      POLLICE A, TANDOI V, LESTINGI C. Influence of aeration and sludge retention time on ammonium oxidation to nitrite and nitrate[J]. Water Research, 2002, 36(10): 2541-2546.

    • 42

      WU J, HE C, VAN LOOSDRECHT M C M, et al. Selection of ammonium oxidizing bacteria (AOB) over nitrite oxidizing bacteria (NOB) based on conversion rates[J]. Chemical Engineering Journal, 2016, 304: 953-961.

    • 43

      WU C, PENG Y, WANG S, et al. Effect of sludge retention time on nitrite accumulation in real-time control biological nitrogen removal sequencing batch reactor[J]. Chinese Journal of Chemical Engineering, 2011, 19(3): 512-517.

    • 44

      RONGSAYAMANONT C, LIMPIYAKORN T, KHAN E. Effects of inoculum type and bulk dissolved oxygen concentration on achieving partial nitrification by entrapped-cell-based reactors[J]. Bioresource Technology, 2014, 164: 254-263.

    • 45

      CHEN Z, WANG X, YANG Y, et al. Partial nitrification and denitrification of mature landfill leachate using a pilot-scale continuous activated sludge process at low dissolved oxygen[J]. Bioresource Technology, 2016, 218: 580-588.

    • 46

      BAO P, WANG S, MA B, et al. Achieving partial nitrification by inhibiting the activity of Nitrospira-like bacteria under high-DO conditions in an intermittent aeration reactor[J]. Journal of Environmental Sciences, 2017, 56: 71-78.

    • 47

      WETT B, HELL M, NYHUIS G, et al. Syntrophy of aerobic and anaerobic ammonia oxidisers[J]. Water Science & Technology, 2010, 61(8): 1915-1922.

    • 48

      孟婷, 杨宏. 活性污泥快速实现短程硝化及稳定高效运行[J]. 中国给水排水, 2017, 33(15): 1-5.

    • 49

      ALMEIDA R G B D, SANTOS C E D D, LÜDERS T C, et al. Nitrogen removal by simultaneous partial nitrification, anammox and denitrification (SNAD) in a structured-bed reactor treating animal feed processing wastewater: Inhibitory effects and bacterial community[J]. International Biodeterioration & Biodegradation, 2018, 133: 108-115.

    • 50

      SAYAVEDRA-SOTO L, FERRELL R, DOBIE M, et al. Nitrobacter winogradskyi transcriptomic response to low and high ammonium concentrations[J]. FEMS Microbiology Letters, 2015, 362(3): 1-7.

    • 51

      王会芳, 付昆明, 左早荣, 等. 水力停留时间和溶解氧对陶粒CANON反应器的影响[J]. 环境科学, 2015, 36(11): 4161-4167.

    • 52

      付昆明, 张杰, 曹相生, 等. 曝气量对不同填料CANON反应器运行效率的影响[J]. 化工学报,2010, 61(2): 496-503.

    • 53

      PÉREZ J, LOTTI T, KLEEREBEZEM R, et al. Outcompeting nitrite-oxidizing bacteria in single-stage nitrogen removal in sewage treatment plants: A model-based study[J]. Water Research, 2014, 66: 208-218.

    • 54

      孙延芳, 韩晓宇, 张树军, 等. 颗粒+絮体污泥CANON工艺的启动与SRT影响研究[J]. 环境科学, 2017, 38(2): 672-678.

    • 55

      AKABOCI T R V, GICH F, RUSCALLEDA M, et al. Assessment of operational conditions towards mainstream partial nitritation-anammox stability at moderate to low temperature: Reactor performance and bacterial community[J]. Chemical Engineering Journal, 2018, 350: 192-200.

    • 56

      李冬, 张杰. 城市污水自养脱氮工艺研究[M]. 中国建筑工业出版社, 2017.

    • 57

      付昆明, 周厚田, 苏雪莹, 等. 生物膜短程硝化系统的恢复及其转化为CANON工艺的过程[J]. 环境科学, 2017, 38(4): 1536-1543.

    • 58

      WETT B, MURTHY S, TAKÁCS I, et al. Key parameters for control of DEMON deammonification process[J]. Water Practice, 2007, 1(5): 1-11.

杨宗玥

机 构:北京建筑大学城市雨水系统与水环境教育部重点实验室,中-荷污水处理技术研发中心,北京100044

Affiliation:Sino-Dutch R&D Center for Future Wastewater Treatment Technologies, Key Laboratory of Urban Storm Water System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

角 色:第一作者

Role:First author

邮 箱:Yangzongyue_bj@163.com

第一作者简介:杨宗玥(1995— ),男,硕士研究生。研究方向:水处理技术。E-mail:Yangzongyue_bj@163.com

付昆明

机 构:北京建筑大学城市雨水系统与水环境教育部重点实验室,中-荷污水处理技术研发中心,北京100044

Affiliation:Sino-Dutch R&D Center for Future Wastewater Treatment Technologies, Key Laboratory of Urban Storm Water System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

角 色:通讯作者

Role:Corresponding author

邮 箱:fukunming@163.comfukunming@163.com

作者简介:付昆明(1981— ),男,博士,副教授。研究方向:污水自养脱氮技术等。E-mail:fukunming@163.com

廖敏辉

机 构:北京建筑大学城市雨水系统与水环境教育部重点实验室,中-荷污水处理技术研发中心,北京100044

Affiliation:Sino-Dutch R&D Center for Future Wastewater Treatment Technologies, Key Laboratory of Urban Storm Water System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

仇付国

机 构:北京建筑大学城市雨水系统与水环境教育部重点实验室,中-荷污水处理技术研发中心,北京100044

Affiliation:Sino-Dutch R&D Center for Future Wastewater Treatment Technologies, Key Laboratory of Urban Storm Water System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

曹秀芹

机 构:北京建筑大学城市雨水系统与水环境教育部重点实验室,中-荷污水处理技术研发中心,北京100044

Affiliation:Sino-Dutch R&D Center for Future Wastewater Treatment Technologies, Key Laboratory of Urban Storm Water System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

金曙光,郑晓梅,张利田

角 色:中文编辑

Role:Editor

菌种μmax/ d-1 K s , O 2 / ( mg·L-1) K s , N O 2 / (mg·L-1)
Nitrospira0.75[5]0.47[6]0.90±0.07[7]
Nitrospira0.22[8]0.26~0.45[9]0.70±0.10[10]
Nitrospira0.69±0.10[11]0.33±0.14[11]0.52±0.14[11]
Nitrobacter1.84[12]0.43±0.08[7]1.30±0.08[7]
Nitrobacter0.58±0.19[13]1.40[14]1.50±0.09[10]
Nitrobacter1.85[15]0.35~0.96[16]2.25±0.51[15]
游离亚硝酸/( mg·L-1) [7,37,38]游离氨/( mg·L-1) [20,39,40]
环境1环境2环境3环境1环境2环境3
0.080.020.030.850.76.0
污泥龄/d [41,42,43]溶解氧/( mg·L-1) [44,45,46]
环境1环境2环境3环境1环境21)环境31)环境41)
34.210~203.00.3~0.51.80.3

表1 NitrospiraNitrobacter动力学参数

Table 1 Kinetic parameters of Nitrospira and Nitrobacter

表2 NOB在不同环境下的主要抑制参数

Table 2 Major inhibition parameters of NOB in different environments

image /

无注解

1) 为间歇曝气工况,t(曝气)t(停曝)=10 min∶10 min。

  • 参 考 文 献

    • 1

      付昆明, 张杰, 曹相生, 等. 曝气量对不同填料CANON反应器运行效率的影响[J]. 化工学报, 2010, 61(2): 496-503.

    • 2

      熊鸿斌, 夏晓宇, 王玉芳, 等. 低C/N值城市污水处理厂出水达标的运行条件优化[J]. 中国给水排水, 2013, 29(1): 92-96.

    • 3

      付昆明, 付国, 左早荣. 厌氧氨氧化技术应用于市政污水处理的前景分析[J]. 中国给水排水, 2015, 31(4): 8-13.

    • 4

      ISHII K, FUJITANI H, SOH K, et al. Enrichment and physiological characterization of a cold-adapted nitrite-oxidizing Nitrotoga sp. from an eelgrass sediment[J]. Applied and Environmental Microbiology, 2017, 83(14): 1-14.

    • 5

      MAIXNER F, NOGUERA D R, ANNESER B, et al. Nitrite concentration influences the population structure of Nitrospira-like bacteria[J]. Environmental Microbiology, 2006, 8(8):1487-1495.

    • 6

      MANSER R, GUJER W, SIEGRIST H. Consequences of mass transfer effects on the kinetics of nitrifiers[J]. Water Research, 2005, 39(19): 4633-4642.

    • 7

      BLACKBURNE R, VADIVELU V M, YUAN Z, et al. Kinetic characterization of an enriched Nitrospira culture with comparison to Nitrobacter[J]. Water Research, 2007, 41(14): 3033-3042.

    • 8

      FUJITANI H, AOI Y, TSUNEDA S. Selective enrichment of two different types of Nitrospira-like nitrite-oxidizing bacteria from a wastewater treatment plant[J]. Microbes and Environments, 2013, 28(2): 236-243.

    • 9

      WU J, ZHANG Y, ZHANG M, et al. Effect of nitrifiers enrichment and diffusion on their oxygen half-saturation value measurements[J]. Biochemical Engineering Journal, 2017, 123: 110-116.

    • 10

      COURTENS E N P, DE CLIPPELEIR H, VLAEMINCK S E, et al. Nitric oxide preferentially inhibits nitrite oxidizing communities with high affinity for nitrite[J]. Journal of Biotechnology, 2015, 193: 120-122.

    • 11

      PARK M, PARK H, CHANDRAN K. Molecular and kinetic characterization of planktonic Nitrospira spp. selectively enriched from activated sludge[J]. Environmental Science & Technology, 2017, 51(5): 2720-2728.

    • 12

      LEYVA-DÍAZ J C, CALDERÓN K, RODRÍGUEZ F A, et al. Comparative kinetic study between moving bed biofilm reactor-membrane bioreactor and membrane bioreactor systems and their influence on organic matter and nutrients removal[J]. Biochemical Engineering Journal, 2013, 77: 28-40.

    • 13

      CRUVELLIER N, POUGHON L, CREULY C, et al. Growth modelling of Nitrosomonas europaea ATCC® 19718 and Nitrobacter winogradskyi ATCC® 25391: A new online indicator of the partial nitrification[J]. Bioresource Technology, 2016, 220:369-377.

    • 14

      CIUDAD G, WERNER A, BORNHARDT C, et al. Differential kinetics of ammonia-and nitrite-oxidizing bacteria: A simple kinetic study based on oxygen affinity and proton release during nitrification[J]. Process Biochemistry, 2006, 41(8): 1764-1772.

    • 15

      NOWKA B, DAIMS H, SPIECK E. Comparison of oxidation kinetics of nitrite-oxidizing bacteria: Nitrite availability as a key factor in niche differentiation[J]. Applied and Environmental Microbiology, 2015, 81(2): 745-753.

    • 16

      RONGSAYAMANONT C, LIMPIYAKORN T, LAW B, et al. Relationship between respirometric activity and community of entrapped nitrifying bacteria: Implications for partial nitrification[J]. Enzyme and Microbial Technology, 2010, 46(3/4):229-236.

    • 17

      姚倩, 彭党聪, 赵俏迪, 等. 活性污泥中硝化螺菌(Nitrospira)的富集及其动力学参数[J]. 环境科学, 2017, 38(12): 5201-5207.

    • 18

      KIM D, KIM S. Effect of nitrite concentration on the distribution and competition of nitrite-oxidizing bacteria in nitratation reactor systems and their kinetic characteristics[J]. Water Research, 2006, 40(5): 887-894.

    • 19

      NOGUEIRA R, MELO L F. Competition between Nitrospira spp. and Nitrobacter spp. in nitrite-oxidizing bioreactors[J]. Biotechnology and Bioengineering, 2006, 95(1):169-175.

    • 20

      USHIKI N, JINNO M, FUJITANI H, et al. Nitrite oxidation kinetics of two Nitrospira strains: The quest for competition and ecological niche differentiation[J]. Journal of Bioscience and Bioengineering, 2017, 123(5): 581-589.

    • 21

      CÉBRON A, GARNIER J. Nitrobacter and Nitrospira genera as representatives of nitrite-oxidizing bacteria: Detection, quantification and growth along the lower Seine River (France) [J]. Water Research, 2005, 39(20): 4979-4992.

    • 22

      KOCH H, LÜCKER S, ALBERTSEN M, et al. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira[J]. Proceedings of the National Academy of Sciences, 2015, 112(36): 11371-11376.

    • 23

      HUANG Z, GEDALANGA P B, ASVAPATHANAGUL P, et al. Influence of physicochemical and operational parameters on Nitrobacter and Nitrospira communities in an aerobic activated sludge bioreactor[J]. Water Research, 2010, 44(15): 4351-4358.

    • 24

      于莉芳, 杜倩倩, 傅学焘, 等. 城市污水中硝化菌群落结构与性能分析[J]. 环境科学, 2016, 37(11): 4366-4371.

    • 25

      任武昂. 城市污水输送、处理过程中氮组分的迁变特性及转化规律研究[D]. 西安: 西安建筑科技大学, 2015.

    • 26

      YU L, LI R, DELATOLLA R, et al. Natural continuous influent nitrifier immigration effects on nitrification and the microbial community of activated sludge systems[J]. Journal of Environmental Sciences, 2018, 74: 159-167.

    • 27

      JAUFFUR S, ISAZADEH S, FRIGON D. Should activated sludge models consider influent seeding of nitrifiers? Field characterization of nitrifying bacteria[J]. Water Science & Technology, 2014, 70(9): 1526-1532.

    • 28

      曾薇, 张丽敏, 王安其, 等. 污水处理系统中硝化菌的菌群结构和动态变化[J]. 中国环境科学, 2015, 35(11): 3257-3265.

    • 29

      刘国华, 陈燕, 范强, 等. 溶解氧对活性污泥系统的脱氮效果和硝化细菌群落结构的影响[J]. 环境科学学报, 2016, 36(6): 1971-1978.

    • 30

      ABZAZOU T, ARAUJO R M, AUSET M, et al. Tracking and quantification of nitrifying bacteria in biofilm and mixed liquor of a partial nitrification MBBR pilot plant using fluorescence in situ hybridization[J]. Science of the Total Environment, 2016, 541: 1115-1123.

    • 31

      LEENEN E J T M, VAN BOXTEL A M G A, ENGLUND G, et al. Reduced temperature sensitivity of immobilized Nitrobacteragilis cells caused by diffusion limitation[J]. Enzyme and Microbial Technology, 1997, 20(8): 573-580.

    • 32

      PERSSON F, SULTANA R, SUAREZ M, et al. Structure and composition of biofilm communities in a moving bed biofilm reactor for nitritation-anammox at low temperatures[J]. Bioresource Technology, 2014, 154: 267-273.

    • 33

      POOT V, HOEKSTRA M, GELEIJNSE M A A, et al. Effects of the residual ammonium concentration on NOB repression during partial nitritation with granular sludge[J]. Water Research, 2016, 106: 518-530.

    • 34

      FANG F, NI B, LI X, et al. Kinetic analysis on the two-step processes of AOB and NOB in aerobic nitrifying granules[J]. Applied Microbiology and Biotechnology, 2009, 83(6): 1159-1169.

    • 35

      ISANTA E, REINO C, CARRERA J, et al. Stable partial nitritation for low-strength wastewater at low temperature in an aerobic granular reactor[J]. Water Research, 2015, 80: 149-158.

    • 36

      ZHU T, XU B, WU J. Experimental and mathematical simulation study on the effect of granule particle size distribution on partial nitrification in aerobic granular reactor[J]. Biochemical Engineering Journal, 2018, 134: 22-29.

    • 37

      PARK S, BAE W. Modeling kinetics of ammonium oxidation and nitrite oxidation under simultaneous inhibition by free ammonia and free nitrous acid[J]. Process Biochemistry, 2009, 44(6): 631-640.

    • 38

      PEDROUSO A, VAL DEL RÍO Á, MORALES N, et al. Nitrite oxidizing bacteria suppression based on in-situ free nitrous acid production at mainstream conditions[J]. Separation and Purification Technology, 2017, 186: 55-62.

    • 39

      KIM D, LEE D, KELLER J. Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH[J]. Bioresource Technology, 2006, 97(3): 459-468.

    • 40

      VADIVELU V M, KELLER J, YUAN Z. Effect of free ammonia on the respiration and growth processes of an enriched Nitrobacter culture[J]. Water Research, 2007, 41(4): 826-834.

    • 41

      POLLICE A, TANDOI V, LESTINGI C. Influence of aeration and sludge retention time on ammonium oxidation to nitrite and nitrate[J]. Water Research, 2002, 36(10): 2541-2546.

    • 42

      WU J, HE C, VAN LOOSDRECHT M C M, et al. Selection of ammonium oxidizing bacteria (AOB) over nitrite oxidizing bacteria (NOB) based on conversion rates[J]. Chemical Engineering Journal, 2016, 304: 953-961.

    • 43

      WU C, PENG Y, WANG S, et al. Effect of sludge retention time on nitrite accumulation in real-time control biological nitrogen removal sequencing batch reactor[J]. Chinese Journal of Chemical Engineering, 2011, 19(3): 512-517.

    • 44

      RONGSAYAMANONT C, LIMPIYAKORN T, KHAN E. Effects of inoculum type and bulk dissolved oxygen concentration on achieving partial nitrification by entrapped-cell-based reactors[J]. Bioresource Technology, 2014, 164: 254-263.

    • 45

      CHEN Z, WANG X, YANG Y, et al. Partial nitrification and denitrification of mature landfill leachate using a pilot-scale continuous activated sludge process at low dissolved oxygen[J]. Bioresource Technology, 2016, 218: 580-588.

    • 46

      BAO P, WANG S, MA B, et al. Achieving partial nitrification by inhibiting the activity of Nitrospira-like bacteria under high-DO conditions in an intermittent aeration reactor[J]. Journal of Environmental Sciences, 2017, 56: 71-78.

    • 47

      WETT B, HELL M, NYHUIS G, et al. Syntrophy of aerobic and anaerobic ammonia oxidisers[J]. Water Science & Technology, 2010, 61(8): 1915-1922.

    • 48

      孟婷, 杨宏. 活性污泥快速实现短程硝化及稳定高效运行[J]. 中国给水排水, 2017, 33(15): 1-5.

    • 49

      ALMEIDA R G B D, SANTOS C E D D, LÜDERS T C, et al. Nitrogen removal by simultaneous partial nitrification, anammox and denitrification (SNAD) in a structured-bed reactor treating animal feed processing wastewater: Inhibitory effects and bacterial community[J]. International Biodeterioration & Biodegradation, 2018, 133: 108-115.

    • 50

      SAYAVEDRA-SOTO L, FERRELL R, DOBIE M, et al. Nitrobacter winogradskyi transcriptomic response to low and high ammonium concentrations[J]. FEMS Microbiology Letters, 2015, 362(3): 1-7.

    • 51

      王会芳, 付昆明, 左早荣, 等. 水力停留时间和溶解氧对陶粒CANON反应器的影响[J]. 环境科学, 2015, 36(11): 4161-4167.

    • 52

      付昆明, 张杰, 曹相生, 等. 曝气量对不同填料CANON反应器运行效率的影响[J]. 化工学报,2010, 61(2): 496-503.

    • 53

      PÉREZ J, LOTTI T, KLEEREBEZEM R, et al. Outcompeting nitrite-oxidizing bacteria in single-stage nitrogen removal in sewage treatment plants: A model-based study[J]. Water Research, 2014, 66: 208-218.

    • 54

      孙延芳, 韩晓宇, 张树军, 等. 颗粒+絮体污泥CANON工艺的启动与SRT影响研究[J]. 环境科学, 2017, 38(2): 672-678.

    • 55

      AKABOCI T R V, GICH F, RUSCALLEDA M, et al. Assessment of operational conditions towards mainstream partial nitritation-anammox stability at moderate to low temperature: Reactor performance and bacterial community[J]. Chemical Engineering Journal, 2018, 350: 192-200.

    • 56

      李冬, 张杰. 城市污水自养脱氮工艺研究[M]. 中国建筑工业出版社, 2017.

    • 57

      付昆明, 周厚田, 苏雪莹, 等. 生物膜短程硝化系统的恢复及其转化为CANON工艺的过程[J]. 环境科学, 2017, 38(4): 1536-1543.

    • 58

      WETT B, MURTHY S, TAKÁCS I, et al. Key parameters for control of DEMON deammonification process[J]. Water Practice, 2007, 1(5): 1-11.