en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
YANK, LIS, FENGW, et al. Analysis and prospect on key technology of high-voltage discharge for environmental engineering study and application[J]. High Voltage Engineering, 2015, 41(8): 2528-2544.
参考文献 2
ZHOUX, CAOZ, MA Y, et al. Concentrations, correlations and chemical species of PM2.5/PM10 based on published data in China: Potential implications for the revised particulate standard[J]. Chemosphere, 2016, 144: 518-526.
参考文献 3
SOBCZYKA T, MARCHEWICZA, KRUPAA, et al. Enhancement of collection efficiency for fly ash particles (PM2.5) by unipolar agglomerator in two-stage electrostatic precipitator[J]. Separation and Purification Technology, 2017, 187: 91-101.
参考文献 4
KIMS, SIOUTASC, CHANGM. Electrostatic enhancement of the collection efficiency of stainless steel fiber filters[J]. Aerosol Science and Technology, 2000, 32(3): 197-213.
参考文献 5
RODRIGUESM V, BARROZOM A S, GONCALVESJ A S, et al. Effect of particle electrostatic charge on aerosol filtration by a fibrous filter[J]. Powder Technology, 2017, 313: 323-331.
参考文献 6
钱幺, 钱晓明, 邓辉, 等. 静电增强纤维过滤技术的研究进展[J]. 合成纤维工业, 2016, 39(1): 48-52.
参考文献 7
ARDKAPANS R, JOHNSONM S, YAZDS, et al. Filtration efficiency of an electrostatic fibrous filter: Studying filtration dependency on ultrafine particle exposure and composition[J]. Journal of Aerosol Science, 2014, 72(3): 14-20.
参考文献 8
YANGS, LEEG W. Electrostatic enhancement of collection efficiency of the fibrous filter pretreated with ionic surfactants[J]. Air Repair, 2005, 55(5): 594-603.
参考文献 9
荣伟东, 张国权. 静电强化纤维层过滤性能的研究[J]. 环境工程, 1993,11(1): 24-29.
参考文献 10
LAMBG E R, CONSTANZAP A. Low-energy electrified filter system[J]. Filtration and Separation, 1980, 17(4): 319-322.
参考文献 11
王丽丽, 王丽萍, 张秀琨, 等. 电袋复合式除尘器的工业化应用研究[J]. 电力科技与环保, 2008, 24(5): 1-4.
参考文献 12
马艳玲. AHPC型电袋复合除尘器理论研究及电场仿真[D]. 赣州:江西理工大学, 2012.
参考文献 13
JAEK L, SEONGC K, JINH S, et al. Performance evaluation of electrostatically augmented air filters coupled with a corona precharger[J]. Aerosol Science and Technology, 2001, 35(4): 785-791.
参考文献 14
朱永超, 李坚, 徐鹏. 新型电袋复合除尘器性能研究[J]. 环境工程学报, 2011, 5(9): 2091-2094.
参考文献 15
ZHUANGB, ZHENGW, TAOY. Filtration characteristics of fibrous filter following an electrostatic precipitator[J]. Journal of Electrostatics, 2016, 83: 52-62.
参考文献 16
JAWOREKA, KRUPAA, CZECHT. Modern electrostatic devices and methods for exhaust gas cleaning: A brief review[J]. Journal of Electrostatics, 2007, 65(3): 133-155.
参考文献 17
JAWOREKA, CZECHT, RAJCHE, et al. Laboratory studies of back-discharge in fly ash[J]. Journal of Electrostatics, 2006, 64(5): 326-337.
参考文献 18
聂衍韬, 向晓东. 横向双极电除尘器性能实验研究[J]. 环境工程, 2015, 33(1): 77-79.
参考文献 19
国家技术监督局. 粉尘物性试验方法 第3部分:堆积密度的测定 自然堆积法标准: GB/T 16913.3-1997 [S].北京: 中国标准出版社, 1998.
目录 contents

    摘要

    为提高现有电袋复合除尘器的除尘效率,降低压力损失,改进清灰效果,设计出一种线管式双极电袋复合除尘器,并对其增效减阻作用和单极电袋复合除尘器进行了对比研究。在硅微粉中位径1.74 μm、过滤风速3 m·min-1、入口粉尘浓度2 500 mg·m-3的实验条件下,双极电袋复合除尘器比单极电袋复合除尘器的粉尘透过率、压力损失分别降低25%、27%以上。为分析双极荷电粉尘的静电凝并增效作用,测定了滤料表面沉积粉尘层的粒度分布,发现单极荷电和双极荷电沉积尘的中位径分别为1.83 μm和1.92 μm,表明双极荷电粉尘具有较好的静电凝并作用,所形成的较粗团聚颗粒物不易透过滤料,使除尘效率提高。为阐明双极荷电粉尘的减阻作用,采用自然堆积法测出双极荷电粉尘的堆积密度小于单极荷电粉尘,证明粉尘双极荷电后会在滤料表面形成较蓬松的粉尘层,这将有助于降低压力损失、提高清灰效果。

    Abstract

    In order to improve the particle collection, filter cleaning, and pressure drop reduction of the current electrostatic enhancement bag filter, a wire-tube bipolar electrostatic-bag filter was proposed. Then, in comparison with the unipolar electrostatic-bag filter, its efficiency enhancement and drag reduction effects were analyzed when the silicon powder with medium diameter of 1.74 μm was used. The results show that the dust penetration and pressure drop of bipolar electrostatic-bag filter decreased by over 25% and 27% at the filtration velocity of 3 m·min-1 and inlet dust concentration of 2 500 mg·m-3, respectively. To analyze efficiency enhancement effect of the electrostatic agglomeration of the bipolar charged particles, the particle size distribution of the dust layer on the surface of the fabric filter was determined. The medium diameters of unipolar charged and bipolar charged particles were 1.83 μm and 1.92 μm, respectively, which indicated that the latter presented a stronger electrostatic agglomeration effect. Therefore, the particle collection efficiency can be improved due to the difficult penetration of these coarse agglomeration particles through the fabric material. In order to clarify the drag reduction of the bipolar charged particles, the accumulation density of the particles was measured by the natural stacking method. The results showed that the accumulation density of the bipolar charged particles was less than that of the unipolar charged particles. It is proved that if the charged particles are bipolar, a fluffy dust layer can be formed on the surface of the bag. Thus, it is helpful to reduce the pressure drop and improve the filter cleaning effect.

    燃煤电站、钢铁厂、水泥厂等排放大量的微细颗粒污染物,造成了严重的空气污[1,2]。工业烟气中PM2.5的高效去除是环境保护面临的巨大挑[3]。目前,电除尘器和袋式除尘器是干法高效净化细颗粒物的主要除尘设备。随着环保标准的日趋严格,为实现超净排放,将静电作用与纤维过滤相结合的“电袋复合”除尘方法已成为当前细颗粒物高效净化的一个研究热[4,5]。在20世纪60年代,静电增强纤维过滤除尘实验研究表明,粉尘荷电能有效提高纤维滤料对细颗粒物的过滤性[6],由此引起了许多学者的广泛兴[7,8,9]。随后相继开发出棒帷[10]、前电后袋复合[11]、混合式 (AHPC)[12]、嵌入[13]等工业用电袋复合除尘器。然而,现有的电袋复合除尘器多采用粉尘单极荷电方[14,15]。由于单极荷电粉尘与滤料之间的静电黏附力较强,不仅导致清灰困难,而且随着滤料表面带电粉尘的电荷累积,容易引起反电晕烧[16,17],从而限制了电袋复合除尘技术的工业应用。为解决现有单极电袋复合除尘器清灰难和反电晕烧袋问题,本研究借鉴双极电除尘技[18],提出一种双极电袋复合除尘器并探讨双极电袋复合除尘的增效减阻作用,对电袋复合除尘器的实际应用有一定促进作用。

  • 1 实验装置与方法

    1
  • 1.1 实验装置

    1.1

    实验装置如图1所示,主要包括发尘器、预荷电器、袋式除尘器、脉冲清灰系统4部分。由振动发尘器产生的粉尘先进入预荷电器内荷电,然后进入袋式除尘器进行过滤捕集,净化后的气体由风机从排气管道排出。

    图1
                            电袋复合除尘实验装置

    图1 电袋复合除尘实验装置

    Fig.1 Schematic diagram of experimental system of electrostatic-bag filter

    用于对比实验的单极预荷电器和双极预荷电器的电极结构见图23,单极预荷电器和双极预荷电器均采用线管式电极结构。横断面积0.017 m2,长180 mm。线电极为8根直径0.4 mm钨丝线,管电极为直径10 mm不锈钢管。每根线和管的长度均为135 mm。2种预荷电器异极距均为20 mm。

    图2
                            单极预荷电器电极结构

    图2 单极预荷电器电极结构

    Fig.2 Electrode configuration of unipolar precharger

    图3
                            双极预荷电器电极结构

    图3 双极预荷电器电极结构

    Fig.3 Electrode configuration of bipolar precharger

    袋式除尘器主要包括2部分,即滤袋和脉冲清灰系统。脉冲清灰系统包括空压机、压力容器储存罐、脉冲控制仪、脉冲电磁阀等。实验用4条涤纶纤维滤袋,袋径130 mm,袋长1000 mm,总过滤面积1.68 m2

  • 1.2 实验方法

    1.2

    实验高压电源采用BGG型负直流高压发生器。发尘装置采用振动发尘器,发尘量由节流阀控制,发尘浓度控制在2500 mg·m-3左右。管道内风速测定采用KA23热线风速仪。浓度测定采用CCD-304动压平衡烟尘采样仪,由滤筒采样称重,采样时间4 min。为减小实验误差,每组实验测试3次,取平均值。实验室环境温度20~30 ℃,相对湿度50%~80%。

    为体现细颗粒的净化效果,实验粉尘选用超细硅微粉,采用MS2000G激光粒度分析仪测定其粒度分布。

    为揭示沉积在滤料表面的双极荷电粉尘的静电凝并现象,所采取的实验方法是:在过滤风速 3 m·min-1、荷电器外加电压9 kV、发尘浓度2500 mg·m-3的条件下,实验系统运行4 min后停机,然后从滤料表面采集沉积粉尘,采用激光粒度分析仪测定粉尘试样的粒度分布。

    滤料的压力损失是在荷电器外加电压9 kV、发尘浓度2 500 mg·m-3、过滤风速1~3 m·min-1范围内,采用皮托管在除尘器前后两端采样孔测得。

    滤料表面带电粉尘的堆积密度采用国家标准中的自然堆积[19]进行测定。

  • 2 结果与讨论

    2
  • 2.1 提效作用

    2.1

    实验用硅微粉的粒度分布测定结果如图4所示,中位径为1.74 μm。由于单极和双极电袋复合除尘器的除尘效率都较高,不便于对比分析。为更好地体现双极荷电静电增强袋式除尘的增效作用,采用透过率(见式(1))表征净化效果。

    图4
                            实验粉尘粒度分布

    图4 实验粉尘粒度分布

    Fig.4 Particle size distribution of experimental dust

    P = c 1 / c 0 × 100 %
    (1)

    式中:P为粉尘透过率,%;c1为除尘器出口粉尘浓度,mg·m-3c0为除尘器入口粉尘浓度,mg·m-3

    通常工业布袋除尘器的过滤风速在1 m·min-1左右。但在实验中发现,当过滤风速为1 m·min-1时,由于采用了静电增强过滤,除尘效率太高,出口浓度过低导致检测困难。因此,为了便于测定出口浓度,选取过滤风速3 m·min-1。图5为过滤风速3 m·min-1时单极和双极电袋复合除尘器粉尘透过率的实验对比。结果表明,随着荷电器外加电压的增加,粉尘的荷电量增加,透过率降低,且双极电袋复合除尘器的透过率比单极电袋复合除尘器的透过率低25%以上。经分析认为,沉积在滤料表面的双极荷电粉尘的静电凝并作用可能是双极电袋复合除尘器增效的主要原因。

    图5
                            粉尘透过率对比

    图5 粉尘透过率对比

    Fig.5 Comparison of dust penetration

  • 2.2 静电凝并

    2.2

    6为沉积在滤料表面的带电粉尘发生静电凝并后的粒度分布。结果表明,当粉尘单极荷电时(图6(a)),沉积在滤料上的粉尘中位径为1.83 μm,最大粉尘粒径38.7 μm,粒径在10 μm以上粉尘的累积体积分数为3.72%;而当粉尘双极荷电时(图6(b)),沉积在滤料上的粉尘中位径为1.92 μm,最大粉尘粒径152 μm,粒径在10 μm以上粉尘的累积体积分数为10.91%。虽然单极荷电粉尘的中位径和双极荷电粉尘的中位径均大于原始粉尘,但是双极荷电粉尘的粒度明显大于单极荷电粉尘的粒度。故说明双极荷电粉尘在滤料表面的静电凝并作用高于单极荷电粉尘。由于凝并后的较大颗粒不易透过滤袋,所以采用粉尘双极荷电方式有助于提高袋式除尘器的除尘效率。

    图6
                            不同荷电情况下静电凝并粉尘的粒径分布

    图6 不同荷电情况下静电凝并粉尘的粒径分布

    Fig.6 Particle size distribution of electrostatic agglomeration under different charging conditions

  • 2.3 压力损失

    2.3

    7为单极与双极电袋复合除尘器滤料的压力损失与过滤风速的变化关系。结果显示,滤料的压力损失随过滤风速的提高而增大。在相同的过滤风速下,双极电袋复合除尘器的滤料压力损失比单极电袋复合除尘器的滤料压力损失低27%以上。经分析认为,由于双极荷电粉尘的静电凝并作用形成了絮状粉尘团,其使滤料表面的沉积粉尘层较蓬松,过滤压力损失减小。

    图7
                            过滤风速与压力损失的关系

    图7 过滤风速与压力损失的关系

    Fig.7 Relationship between filtration velocity and pressure drop

  • 2.4 堆积密度

    2.4

    为阐明双极荷电粉尘的减阻作用,有必要研究双极荷电沉积粉尘层的堆积密度的变化情况。粉尘层堆积密度的检测结果见表1。结果表明,在相同外加电压下双极荷电粉尘的堆积密度低于单极荷电粉尘。造成这一结果的原因可能是:1) 由于沉积在滤料表面的双极荷电粉尘的静电凝并作用,形成了结构较蓬松的絮状粉尘团,使粉尘层的空隙率增大;2) 由于双极荷电粉尘的静电中和作用,降低了粉尘与滤料纤维的静电附着力,使沉积在滤料表面的粉尘层变得较蓬松。因此,采取双极预荷电方式,有利于在滤料表面形成较蓬松的粉尘层,从而有助于降低压力损失、提高清灰效果。

    表1 不同荷电情况下滤料表面粉尘的堆积密度

    Table 1 Accumulation density of different charged particles on surface of fabric filter

    外加电压/kV单极荷电粉尘堆积密度/(g·cm-3)双极荷电粉尘堆积密度/(g·cm-3)
    90.6870.606
    100.6150.532
    110.4920.413
    120.3970.337
  • 3 结论

    3

    1) 双极电袋复合除尘器的排放浓度低、压力损失小。对比实验表明,在过滤风速、荷电器外加电压、入口粉尘浓度相同的条件下,双极电袋复合除尘器比单极电袋复合除尘器粉尘透过率、压力损失分别降低25%和27%以上。

    2) 双极荷电粉尘的静电凝并增效作用突出。滤料表面带电粉尘的粒径分布测定分析表明,双极荷电粉尘的中位径比原始粉尘增大9.37%。

    3) 滤料表面沉积的双极荷电粉尘的静电中和作用能有效地消减电荷积累,削弱粉尘与滤料间的静电附着力,进而易形成蓬松的粉尘层。粉尘堆积密度测定结果表明,双极荷电粉尘堆积密度小于单极荷电粉尘堆积密度。因此,在双极荷电情况下,滤料表面所形成的蓬松粉尘层有利于滤料清灰。

  • 参考文献

    • 1

      YAN K, LI S, FENG W, et al. Analysis and prospect on key technology of high-voltage discharge for environmental engineering study and application[J]. High Voltage Engineering, 2015, 41(8): 2528-2544.

    • 2

      ZHOU X, CAO Z, MA Y, et al. Concentrations, correlations and chemical species of PM2.5/PM10 based on published data in China: Potential implications for the revised particulate standard[J]. Chemosphere, 2016, 144: 518-526.

    • 3

      SOBCZYK A T, MARCHEWICZ A, KRUPA A, et al. Enhancement of collection efficiency for fly ash particles (PM2.5) by unipolar agglomerator in two-stage electrostatic precipitator[J]. Separation and Purification Technology, 2017, 187: 91-101.

    • 4

      KIM S, SIOUTAS C, CHANG M. Electrostatic enhancement of the collection efficiency of stainless steel fiber filters[J]. Aerosol Science and Technology, 2000, 32(3): 197-213.

    • 5

      RODRIGUES M V, BARROZO M A S, GONCALVES J A S, et al. Effect of particle electrostatic charge on aerosol filtration by a fibrous filter[J]. Powder Technology, 2017, 313: 323-331.

    • 6

      钱幺, 钱晓明, 邓辉, 等. 静电增强纤维过滤技术的研究进展[J]. 合成纤维工业, 2016, 39(1): 48-52.

    • 7

      ARDKAPAN S R, JOHNSON M S, YAZD S, et al. Filtration efficiency of an electrostatic fibrous filter: Studying filtration dependency on ultrafine particle exposure and composition[J]. Journal of Aerosol Science, 2014, 72(3): 14-20.

    • 8

      YANG S, LEE G W. Electrostatic enhancement of collection efficiency of the fibrous filter pretreated with ionic surfactants[J]. Air Repair, 2005, 55(5): 594-603.

    • 9

      荣伟东, 张国权. 静电强化纤维层过滤性能的研究[J]. 环境工程, 1993,11(1): 24-29.

    • 10

      LAMB G E R, CONSTANZA P A. Low-energy electrified filter system[J]. Filtration and Separation, 1980, 17(4): 319-322.

    • 11

      王丽丽, 王丽萍, 张秀琨, 等. 电袋复合式除尘器的工业化应用研究[J]. 电力科技与环保, 2008, 24(5): 1-4.

    • 12

      马艳玲. AHPC型电袋复合除尘器理论研究及电场仿真[D]. 赣州:江西理工大学, 2012.

    • 13

      JAE K L, SEONG C K, JIN H S, et al. Performance evaluation of electrostatically augmented air filters coupled with a corona precharger[J]. Aerosol Science and Technology, 2001, 35(4): 785-791.

    • 14

      朱永超, 李坚, 徐鹏. 新型电袋复合除尘器性能研究[J]. 环境工程学报, 2011, 5(9): 2091-2094.

    • 15

      ZHUANG B, ZHENG W, TAO Y. Filtration characteristics of fibrous filter following an electrostatic precipitator[J]. Journal of Electrostatics, 2016, 83: 52-62.

    • 16

      JAWOREK A, KRUPA A, CZECH T. Modern electrostatic devices and methods for exhaust gas cleaning: A brief review[J]. Journal of Electrostatics, 2007, 65(3): 133-155.

    • 17

      JAWOREK A, CZECH T, RAJCH E, et al. Laboratory studies of back-discharge in fly ash[J]. Journal of Electrostatics, 2006, 64(5): 326-337.

    • 18

      聂衍韬, 向晓东. 横向双极电除尘器性能实验研究[J]. 环境工程, 2015, 33(1): 77-79.

    • 19

      国家技术监督局. 粉尘物性试验方法 第3部分:堆积密度的测定 自然堆积法标准: GB/T 16913.3-1997 [S].北京: 中国标准出版社, 1998.

李雪娥

机 构:武汉科技大学资源与环境工程学院,武汉 430081

Affiliation:School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China

角 色:第一作者

Role:First author

邮 箱:1573394128@qq.com

第一作者简介:李雪娥(1992— ),女,硕士研究生。研究方向:烟尘污染控制。E-mail:1573394128@qq.com

向晓东

机 构:

1. 武汉科技大学资源与环境工程学院,武汉 430081

2. 武汉科技大学绿色制造工程研究院,武汉 430081

Affiliation:

1. School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China

2. Green Manufacturing Engineering Academy, Wuhan University of Science and Technology, Wuhan 430081, China

角 色:通讯作者

Role:Corresponding author

邮 箱:drxxd@163.comdrxxd@163.com

作者简介:向晓东(1958— ),男,博士,教授。研究方向:烟尘污染控制理论与应用技术。E-mail:drxxd@163.com

李梦玲

机 构:武汉科技大学资源与环境工程学院,武汉 430081

Affiliation:School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China

向晓晴

机 构:武汉科技大学资源与环境工程学院,武汉 430081

Affiliation:School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China

金曙光,郑晓梅,张利田

角 色:中文编辑

Role:Editor

/html/teepc_cn/201807009/alternativeImage/1ccc06d3-b7bf-4aa0-a1e6-ab85d0faecfa-F001.jpg
/html/teepc_cn/201807009/alternativeImage/1ccc06d3-b7bf-4aa0-a1e6-ab85d0faecfa-F002.jpg
/html/teepc_cn/201807009/alternativeImage/1ccc06d3-b7bf-4aa0-a1e6-ab85d0faecfa-F003.jpg
/html/teepc_cn/201807009/alternativeImage/1ccc06d3-b7bf-4aa0-a1e6-ab85d0faecfa-F004.jpg
/html/teepc_cn/201807009/alternativeImage/1ccc06d3-b7bf-4aa0-a1e6-ab85d0faecfa-F005.jpg
/html/teepc_cn/201807009/alternativeImage/1ccc06d3-b7bf-4aa0-a1e6-ab85d0faecfa-F006.jpg
/html/teepc_cn/201807009/alternativeImage/1ccc06d3-b7bf-4aa0-a1e6-ab85d0faecfa-F007.jpg
外加电压/kV单极荷电粉尘堆积密度/(g·cm-3)双极荷电粉尘堆积密度/(g·cm-3)
90.6870.606
100.6150.532
110.4920.413
120.3970.337

图1 电袋复合除尘实验装置

Fig.1 Schematic diagram of experimental system of electrostatic-bag filter

图2 单极预荷电器电极结构

Fig.2 Electrode configuration of unipolar precharger

图3 双极预荷电器电极结构

Fig.3 Electrode configuration of bipolar precharger

图4 实验粉尘粒度分布

Fig.4 Particle size distribution of experimental dust

图5 粉尘透过率对比

Fig.5 Comparison of dust penetration

图6 不同荷电情况下静电凝并粉尘的粒径分布

Fig.6 Particle size distribution of electrostatic agglomeration under different charging conditions

图7 过滤风速与压力损失的关系

Fig.7 Relationship between filtration velocity and pressure drop

表1 不同荷电情况下滤料表面粉尘的堆积密度

Table 1 Accumulation density of different charged particles on surface of fabric filter

image /

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      YAN K, LI S, FENG W, et al. Analysis and prospect on key technology of high-voltage discharge for environmental engineering study and application[J]. High Voltage Engineering, 2015, 41(8): 2528-2544.

    • 2

      ZHOU X, CAO Z, MA Y, et al. Concentrations, correlations and chemical species of PM2.5/PM10 based on published data in China: Potential implications for the revised particulate standard[J]. Chemosphere, 2016, 144: 518-526.

    • 3

      SOBCZYK A T, MARCHEWICZ A, KRUPA A, et al. Enhancement of collection efficiency for fly ash particles (PM2.5) by unipolar agglomerator in two-stage electrostatic precipitator[J]. Separation and Purification Technology, 2017, 187: 91-101.

    • 4

      KIM S, SIOUTAS C, CHANG M. Electrostatic enhancement of the collection efficiency of stainless steel fiber filters[J]. Aerosol Science and Technology, 2000, 32(3): 197-213.

    • 5

      RODRIGUES M V, BARROZO M A S, GONCALVES J A S, et al. Effect of particle electrostatic charge on aerosol filtration by a fibrous filter[J]. Powder Technology, 2017, 313: 323-331.

    • 6

      钱幺, 钱晓明, 邓辉, 等. 静电增强纤维过滤技术的研究进展[J]. 合成纤维工业, 2016, 39(1): 48-52.

    • 7

      ARDKAPAN S R, JOHNSON M S, YAZD S, et al. Filtration efficiency of an electrostatic fibrous filter: Studying filtration dependency on ultrafine particle exposure and composition[J]. Journal of Aerosol Science, 2014, 72(3): 14-20.

    • 8

      YANG S, LEE G W. Electrostatic enhancement of collection efficiency of the fibrous filter pretreated with ionic surfactants[J]. Air Repair, 2005, 55(5): 594-603.

    • 9

      荣伟东, 张国权. 静电强化纤维层过滤性能的研究[J]. 环境工程, 1993,11(1): 24-29.

    • 10

      LAMB G E R, CONSTANZA P A. Low-energy electrified filter system[J]. Filtration and Separation, 1980, 17(4): 319-322.

    • 11

      王丽丽, 王丽萍, 张秀琨, 等. 电袋复合式除尘器的工业化应用研究[J]. 电力科技与环保, 2008, 24(5): 1-4.

    • 12

      马艳玲. AHPC型电袋复合除尘器理论研究及电场仿真[D]. 赣州:江西理工大学, 2012.

    • 13

      JAE K L, SEONG C K, JIN H S, et al. Performance evaluation of electrostatically augmented air filters coupled with a corona precharger[J]. Aerosol Science and Technology, 2001, 35(4): 785-791.

    • 14

      朱永超, 李坚, 徐鹏. 新型电袋复合除尘器性能研究[J]. 环境工程学报, 2011, 5(9): 2091-2094.

    • 15

      ZHUANG B, ZHENG W, TAO Y. Filtration characteristics of fibrous filter following an electrostatic precipitator[J]. Journal of Electrostatics, 2016, 83: 52-62.

    • 16

      JAWOREK A, KRUPA A, CZECH T. Modern electrostatic devices and methods for exhaust gas cleaning: A brief review[J]. Journal of Electrostatics, 2007, 65(3): 133-155.

    • 17

      JAWOREK A, CZECH T, RAJCH E, et al. Laboratory studies of back-discharge in fly ash[J]. Journal of Electrostatics, 2006, 64(5): 326-337.

    • 18

      聂衍韬, 向晓东. 横向双极电除尘器性能实验研究[J]. 环境工程, 2015, 33(1): 77-79.

    • 19

      国家技术监督局. 粉尘物性试验方法 第3部分:堆积密度的测定 自然堆积法标准: GB/T 16913.3-1997 [S].北京: 中国标准出版社, 1998.