en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
CHEND, GUOH, XUJ, et al. Recovery of iron from pyrite cinder containing non-ferrous metals using high-temperature chloridizing-reduction-magnetic separation [J]. Metallurgical and Materials Transactions B, 2017, 48B: 933-942.
参考文献 2
金程, 李登新. 硫酸烧渣中铁的综合利用研究进展[J]. 金属矿山, 2011(10): 162-165.
参考文献 3
叶志平, 何国伟. 硫酸渣资源化及其以废治废技术研究[J]. 华南师范大学学报 (自然科学版), 2010, 42(2): 72-75.
参考文献 4
王全亮. 某硫酸烧渣提纯降杂工艺试验研究[J].有色金属(选矿部分), 2009(5): 21-25.
参考文献 5
LINZ, QVARFORTU. Predicting the mobility of Zn, Fe, Cu, Pb, Cd from roasted sulfide (pyrite) residues: A case study of wastes from the sulfuric acid industry in Sweden [J]. Waste Management, 1997, 16: 671-681.
参考文献 6
DINGJ, HANP, LVC, et al. Utilization of gold-bearing and iron-rich pyrite cinder via a chlorination-volatilization process [J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(11): 1-10.
参考文献 7
AIPI, DEVECIH, YAZICIE Y, et al. Potential use of pyrite cinders as raw material in cement production: Results of industrial scale trial operations [J]. Journal of Hazardous Materials, 2009, 166 (1): 144-149.
参考文献 8
YANGC, CHENY, PENGP, et al. Trace element transformations and partitioning during the roasting of pyrite ores in the sulfuric acid industry [J]. Journal of Hazardous Materials, 2009, 167: 835-845.
参考文献 9
GIUNTIM, BARONID, BACCIE. Hazard assessment to workers of trace metal content in pyrite cinders [J]. Bulletin of Environmental Contamination and Toxicology, 2004, 72: 352-357.
参考文献 10
LONGH, CHUNT, DIZ, et al. Preparation of metallic iron powder from pyrite cinder by carbothermic reduction and magnetic separation [J]. Metals, 2016, 6(4): 88-96.
参考文献 11
ZHUD Q, CHUNT J, PANJ, et al. Preparation of oxidised pellets using pyrite cinders as raw material [J]. Ironmaking & Steelmaking, 2013, 40: 430-435.
参考文献 12
WANGJ, LUOL, KONGH, et al. The arsenic removal from molten steel [J]. High Temperature Materials and Processes, 2011, 30: 171-173.
参考文献 13
WANGY, XIAOL, LIUY, et al. Alkalic leaching and stabilization of arsenic from pyrite cinders [J]. The Open Waste Management Journal, 2017, 10: 41-50.
参考文献 14
常耀超, 徐晓辉, 王云. 高砷硫酸烧渣脱砷及高温氯化回收金银 [J]. 有色金属(冶炼部分), 2015(6): 46-49.
参考文献 15
SHIZ, WANGM, ZHANGG, et al. Leaching and kinetic modeling of pyrite cinder in sulphuric acid [J]. Asian Journal of Chemistry, 2013, 25(1): 105-109.
参考文献 16
张广伟, 徐政, 李岩. 利用含砷硫酸烧渣生产铁精矿的试验研究[J]. 矿业研究与开发, 2013, 33(1): 34-37.
参考文献 17
CHOONGT, CHUAHT, ROBIAHY, et al. Arsenic toxicity, health hazards and removal techniques from water: An overview [J]. Desalination, 2007, 217: 139-166.
参考文献 18
游洋, 闵小波, 彭兵, 等. 碱性高砷渣晶化稳定处理技术研究 [J]. 有色金属科学与工程, 2015, 6(6): 24-28.
参考文献 19
张明琴, 周新涛, 罗中秋, 等. 石灰-铁盐法处理工业含砷废水研究进展 [J]. 硅酸盐通报,2016, 35(8): 2447-2453.
参考文献 20
KRAUSEE, ETTELV. Solubilities and stabilities of ferric arsenate compounds [J]. Hydrometallurgy, 1989, 22(3): 311-337.
参考文献 21
FUJITAT, TAGUCHIR, ABUMIYAM, et al.Effect of pH on atmospheric scorodite synthesis by oxidation of ferrous ions: Physical properties and stability of the scorodite [J]. Hydrometallurgy, 2009, 96: 189-198.
参考文献 22
DAENZERR, XUL, DOERFELTC, et al. Precipitation behaviour of As(V) during neutralization of acidic Fe(II)-As(V) solutions in batch and continuous modes [J]. Hydrometallurgy, 2014, 146: 40-47.
参考文献 23
SINGHANIAS, WANGQ, FILIPPOUD, et al. Acidity, valency and third-ion effects on the precipitation of scorodite from mixed sulfate solutions under atmospheric-pressure conditions [J]. Metallurgical and Materials Transactions B, 2006, 37(2): 189-197.
参考文献 24
TWIDWELLL G, MCLOSKEYJ W. Removing arsenic from aqueous solution and longterm product storage [J]. JOM, 2011, 63 (8): 94-100.
目录 contents

    摘要

    为考察含砷硫酸烧渣中酸浸脱砷效果和铁盐沉淀固砷行为,采用常温常压酸浸法脱除硫酸烧渣中的砷,并对进入浸出液中的砷以铁盐沉淀的形式脱除,进而对沉淀渣的浸出毒性进行研究。同时,研究了磨矿细度、酸浓度、固液比、浸出时间对硫酸烧渣中砷脱除效率的影响。结果表明,通过控制浸出参数可以将硫酸烧渣中砷的质量分数降低到0.2%以下,通过调节浸出液的pH和Fe/As摩尔比将其中的砷以沉淀的形式脱除。当Fe/As > 2、pH = 4~6时,溶液中砷浓度降到了0.5 mg·L-1以下。沉淀砷渣主要是以非晶态的形式存在,提高铁砷比有利于提高砷渣稳定性,从而降低浸出毒性。在Fe/As = 3、pH = 6.04~6.22的条件下,得到的沉淀渣的浸出毒性为0.711 mg·L-1。因此,通过酸浸脱除硫酸烧渣中的砷,进而采用铁盐沉淀的方法能够实现硫酸烧渣中砷的安全处置。

    Abstract

    In order to investigate the effect of arsenic removal from arsenic-containing pyrite cinder using acid leaching method and the behavior of arsenic fixation by conventional iron salt precipitation, the arsenic containing in the cinder was removed by acid leaching at room temperature and atmospheric pressure, and the arsenic in leaching solution was removed by iron salt precipitation, then the leaching toxicity of precipitates was studied. The effects of grinding fineness, acid concentration, solid-liquid ratio and leaching time on arsenic removal efficiency were investigated. The results show that the arsenic content of the pyrite cinder could be reduced to less than 0.2% by controlling leaching parameters. The arsenic in the leaching solution could be removed as precipitates by adjusting the pH and Fe/As molar ratio. The arsenic concentration in the leaching solution could decrease below 0.5 mg·L-1 when the Fe/As ratio was greater than 2 and the pH was between 4 and 6. The results demonstrate that the precipitates mainly exist in an amorphous form, and increasing the Fe/As ratio could improve the stability and reduce the leaching toxicity of the precipitates. The leaching toxicity of the precipitates was reduced to 0.711 mg·L-1 under the condition of Fe/As = 3, pH = 6.04~6.22. Therefore, the safe disposal of arsenic can be realized by acid leaching to remove arsenic from pyrite cinder and then iron salt precipitation.

    王永良, 肖力, 韩培伟, 等. 针对含砷硫酸烧渣酸浸液的铁盐沉淀固砷 [J]. 环境工程学报, 2019, 13(1): 162-168.

    在中国,随着矿产资源的紧张和对环境保护的日益重视,硫酸烧渣逐渐被作为一种重要的二次资源而受到关[1]。硫酸烧渣中铁含量通常在30%以上,甚至高达60%,其中氧化铁是主要存在形[2]。但是,由于其中还含有少量的硫、砷、铜、锌、铅、金、银等元素,导致硫酸烧渣难以直接用于炼[3,4,5,6,7,8]。我国每年产生的大部分硫酸烧渣被堆存起来,不仅存在环境风险还占用了大量耕[9,10]。目前,通过与其他低硫、低杂质的优质铁矿进行配矿,可以利用一部分硫酸烧渣。但是,硫酸烧渣的加入会对球团的熔炼性能产生很大的影[11]。因此,对硫酸烧渣进行预处理以脱除其中的有害杂质,提高铁的品位能够显著提高硫酸烧渣的利用价值。

    砷是硫铁矿中包含的一种非常重要的非金属杂质,焙烧过程中砷的残留会显著降低烧渣的利用价值。砷会随着炼铁过程进入铁水中,严重影响铁的热塑性(thermoplastic),导致铁受到重压时容易出现裂[12]。硫酸烧渣中的砷通常是以As2O3或者FeAsO4的形式存在,通常采用化学方法将其去[13,14,15]。通过酸浸的方式去除硫酸烧渣中的砷是一种较为常用的方法,浸出过程中砷以水溶性较好的砷酸根(AsO43-)或者偏砷酸根(AsO2-)的形式进入溶液[16]。在脱砷的同时还可以将一些金属杂质去除,对于高铁类的硫酸烧渣,采用这种方法处理尤为合适。砷本身是一种毒性物质,如果处理不当还会造成严重的环境污染,危害人体健[17]。因此,对于进入浸出液中的砷,必须进行处理以降低砷的危害。通过沉淀的方式让砷沉淀下来,是目前最为常用的方式之一。由于石灰的廉价易得等因素的影响,目前国内主要采用砷酸钙固砷的方式进行处[18,19]。但是Ca3(As2O3)2的溶解度高达0.13 g·L-1,故其稳定性相对较差。而FeAsO4的溶解度(25 ℃,pH=3~8)只有1.46×10-8L-1,远低于砷酸钙的溶解度,尤其是结晶性良好的臭葱石(scorodite,FeAsO4·2H2O)被认为是固砷的最佳方式之[20]。本研究对砷硫酸烧渣采用常温酸洗的方式脱除其中的砷,并对浸出液中的砷采用铁盐沉淀的方式进行处理,对固砷渣的浸出毒性也进行了分析研究。

  • 1 材料与方法

    1
  • 1.1 实验原料

    1.1

    本实验中所用硫酸烧渣来自辽宁某企业焙烧制硫酸后产生的烧渣,该硫酸渣呈黑色,含水率约20%,烘干后采用等离子体质谱仪(ICP-OES,optima 8000)和原子吸收光谱仪(AAS,WFX-130A)对烧渣的主要化学成分进行分析,烧渣中的主要化学成分如表1所示。

    表1 硫酸烧渣的主要化学成分的质量分数

    Table 1 Main chemical components of pyrite cinder %

    FePbZnCuAsS
    60.441.181.180.131.490.59
  • 1.2 实验方法

    1.2

    浸出脱砷实验:取500 g硫酸烧渣,加入一定比例的水在球磨机中磨矿,通过控制磨矿时间获得不同细度的烧渣。磨矿后用孔径为0.048 mm的标准筛筛分。将一定量细磨过的硫酸烧渣,加入到250 mL锥形瓶中,倒入一定质量浓度的硫酸溶液,置于水浴锅(DF-101S集热式恒温加热磁力搅拌器)中,在25 ℃温度下匀速搅拌。反应0.5~3 h后,将过滤矿浆固液分离(SHZ-D(III)循环水式真空泵)。浸出渣烘干后采用ICP-OES和AAS测试其中物质含量,并采用扫描电子显微镜(SEM,JSM-7001F+INCA-MAX)对其形貌进行分析。浸出液采用ICP-OES和AAS对其中的As、Fe等其他元素进行分析。

    浸出液沉砷实验:取100 mL浸出液移入150 mL的锥形瓶中,根据溶液中Fe/As的摩尔比添加一定比例的Fe2(SO4)3,磁力搅拌水浴锅中保持温度恒定在25 ℃,开启搅拌,加入双氧水反应6 h后,加入氨水,调节溶液的pH,当pH达到指定值时,迅速抽滤。滤液采用ICP-OES和AAS对其中的As、Fe元素进行分析。沉淀渣在烘箱中烘干后,采用SEM对其表面形貌进行分析。

    沉淀渣的浸出毒性分析:称取2 g(烘干后)沉淀渣,置于容积为50 mL的离心管中,加入20 mL醋酸缓冲液(pH = 4.9±0.05)。室温条件下将离心管垂直固定在水平往复振荡器上,调节振荡频率为 (110±10)次·min-1,在室温下振荡48 h,静置8 h后,通过真空抽滤机过滤,采用ICP-OES和AAS测定滤液中As和Fe的含量。

  • 2 结果与讨论

    2
  • 2.1 硫酸烧渣中砷去除实验

    2.1

    在硫酸浓度5%、液固质量比1∶4、水浴锅恒温25 ℃的条件下,分别对细度< 0.048 mm矿物占比为81.2%、90.1%、94.5%、96.1%、98.2%和98.8%的烧渣进行浸出实验,搅拌3 h后,真空抽滤固液分离。浸出渣烘干后测试其中的砷含量,结果如图1(a)所示。随着矿物细度的增加,浸出后渣中砷的含量逐渐降低。当磨矿细度> 94%时,砷的含量降低到0.2%以下;继续细磨烧渣,砷的含量基本不再降低。

    在固液质量比1∶4、恒温25 ℃、搅拌3 h的条件下,控制硫酸烧渣磨矿细度> 94%(< 0.048 mm),改变浸出液中硫酸的浓度,研究硫酸质量分数分别在1%、3%、5%、7%和9%的条件下渣中砷去除的情况,实验结果如图1(b)所示。图1(b)结果显示,随着硫酸浓度的增加,浸出渣中砷的含量逐渐降低。当硫酸浓度增大到5%时,渣中砷的含量下降到了0.2%以下;继续增大硫酸浓度,砷的含量降低有限。

    在硫酸烧渣磨矿细度> 94%(< 0.048 mm)、硫酸浓度5%、温度25 ℃、反应3 h的条件下,考察液固质量比变化对浸出渣中砷去除效果的影响,结果如图1(c)所示。浸出液的液固比变化对砷的去除影响较小。当液固比从2增加到6时,浸出渣中砷的含量变化有限。

    在磨矿细度> 94%(< 0.048 mm)、硫酸浓度5%、液固质量比3∶1、温度25 ℃的条件下,研究不同反应时间对硫酸烧渣中砷去除的影响。不同反应时间条件下浸出溶液中砷的浓度如图1(d)所示。随着反应时间的增加,溶液中砷的含量迅速增加;当反应时间超过2 h后,溶液中砷的含量几乎不再增加。

    图1
                            不同的浸出条件对砷去除的影响

    图1 不同的浸出条件对砷去除的影响

    Fig.1 Effect of different leaching conditions on arsenic removal

    通过上述实验结果可以看出,常温下通过控制矿物磨矿细度、硫酸浓度、固液比和反应时间,可以将硫酸烧渣中大部分的砷去除。本研究所用硫酸烧渣经过处理,渣中砷的含量从1.49%下降到了0.2%以下,砷的去除率超过86%。

  • 2.2 浸出液中砷的去除

    2.2

    本研究向浸出液中补加一定量的硫酸铁盐,研究不同Fe/As比含量条件下溶液中砷的沉淀情况。所用浸出液为上述浸出反应后收集的浸出液,混合均匀后测得溶液中铁和砷的浓度分别为1.815 g·L-1和3.158 g·L-1,溶液中铁砷的摩尔比约为0.768。表2,3,4中分别列出了在pH = 1~7的范围内,Fe/As比为1∶1、2∶1和3∶1的条件下溶液中砷的去除情况。由表2,3,4可知,随着pH逐渐升高,浸出液中铁和砷的含量逐渐下降。在表2中,当Fe/As = 1时,铁含量随着pH的升高迅速降低;当pH = 2.07时,溶液中铁含量下降到了24.12 mg·L-1;pH继续增大到4.08时,铁含量降低到了0.528 mg·L-1,而此时溶液中砷的含量下降到了20.06 mg·L-1;pH增大到6.08时,溶液中的铁被完全脱除,而砷含量降低到了最小值12.14 mg·L-1;继续增大溶液的pH,溶液中砷的含量反而稍微增大。所以,当溶液中铁砷摩尔比较低时,调节溶液的pH可以除去溶液中大部分的砷,但仍有大量的砷在溶液中无法脱除。

    表2 Fe/As=1时不同pH条件下得到的除砷液中砷和铁的浓度

    Table 2 Arsenic and iron concentration in solution after arsenic removal under different pH conditions when Fe/As = 1

    初始pH终点 pHFe浓度/(mg·L-1)As浓度/(mg·L-1)
    1.11.051 7652 643
    2.172.0724.12363.8
    3.062.981.221175.6
    4.034.080.52820.06
    5.175.0815.29
    6.026.0812.14
    7.076.9625.44

    在表3中,当Fe/As=2时,铁和砷含量随着pH的升高逐渐降低;当pH=3.01时,溶液中铁含量下降到了230.7 mg·L-1,砷含量下降到了11.71 mg·L-1;pH继续增大到4.1时,铁含量降低到了2.691 mg·L-1,而溶液中砷的含量下降到了0.274 mg·L-1;pH增大到6.04时,溶液中几乎不含铁,而砷含量也下降到了0.182 mg·L-1;同样,继续增大pH,砷的含量同样稍微增大。

    表3 Fe/As=2时不同pH条件下得到的除砷液中砷的浓度

    Table 3 Arsenic and iron concentration in solution after arsenic removal under different pH conditions when Fe/As = 2

    初始pH终点 pHFe浓度/(mg·L-1)As浓度/(mg·L-1)
    1.051.064 3972 232
    2.092.11 154257
    3.053.01230.711.71
    4.084.12.6910.274
    5.015.070.0270.208
    6.096.040.182
    7.197.140.684

    在表4中,当Fe/As=3、pH=3.1时,溶液中铁含量下降到了172.3 mg·L-1,砷含量下降到了10.53 mg·L-1;pH继续增大到4.02时,铁含量降低到了2.0 mg·L-1,而砷含量下降到了0.106 mg·L-1;pH增大到5.04时,溶液中铁含为0.252 mg·L-1,而砷含量则达到了最小值0.061 mg·L-1;继续增大溶液的pH,砷的含量反而增大。

    表4 Fe/As=3时不同pH条件下得到的除砷液中砷的浓度

    Table 4 Arsenic and iron concentration in solution after arsenic removal under different pH conditions when Fe/As = 3

    初始pH终点 pHFe浓度/(mg·L-1)As浓度/(mg·L-1)
    1.071.024 8592 146
    2.12.113 783141.7
    3.053.1172.310.53
    4.24.022.00.106
    5.25.040.2520.061
    6.226.040.118
    7.127.060.298

    对比表2,3,4中的结果可以发现,在pH=1~7时,用氨水调节浸出液的pH,溶液的pH和铁离子含量对砷的去除有着重要影[21,22]。同样,砷的沉淀也会促进铁离子的沉淀,二者的沉淀是相互促进的。当溶液中Fe/As > 2时,溶液中的砷含量能够降低到0.5 mg·L-1以下。如表3所示,Fe/As = 2、pH = 4.1时,溶液中砷的含量下降到了0.274 mg·L-1;pH=6.09时,砷的含量为0.182 mg·L-1。如表4所示,Fe/As = 3、pH = 4.2时,溶液中砷的含量下降到了0.106 mg·L-1;pH=6.22时,砷的含量为0.118 mg·L-1

    2为不同条件下沉淀得到的含砷渣的SEM图。如图2所示,沉淀渣由极微小的颗粒团聚在一起,由此可知,得到的砷酸铁沉淀主要以无定型的形态存[13]。分别对图2(a)、(b)、(c)中所列举的沉淀渣做浸出毒性实验,实验结果如表5所示。由表5可知,随着Fe/As的增大,沉淀渣的浸出毒性逐渐减小。当Fe/As = 1、pH = 6.02~6.08时,获得的沉淀渣的浸出毒性显示砷的浸出浓度为42.42 mg·L-1;当Fe/As = 2、pH = 6.04~6.09时,获得的沉淀渣的浸出毒性为2.396 mg·L-1;而在Fe/As = 3、pH = 6.04~6.22的条件下,得到的沉淀渣的浸出毒性为0.711 mg·L-1。故当铁砷比超过2时,渣的浸出毒性会大大降低。相关研究也证明,当Fe/As > 3时,所得到的砷渣适合长期安全存[23,24]

    图2
                            不同条件下沉淀得到的含砷渣的SEM图

    图2 不同条件下沉淀得到的含砷渣的SEM图

    Fig.2 SEM images of arsenic precipitation obtained under different conditions

    表5 不同铁砷比条件下得到的沉淀渣的浸出毒性实验结果

    Table 5 Toxicity test results of the arsenic precipitation under different conditions

    铁砷比pHAs浸出浓度/(mg.L-1)
    16.02~6.0842.42
    26.04~6.092.396
    36.04~6.220.711
  • 3 结论

    3

    1) 在常温常压下,对硫酸烧渣进行处理以脱除砷,在磨矿细度> 94%(< 0.048 mm)、5%的硫酸浓度、液固比1∶3、反应时间超过2 h的条件下,可以将硫酸烧渣中的砷含量从1.49%降低到0.2%以下。

    2) 铁砷比及pH对浸出液中砷的去除有着重要影响。通常,增大pH有利于砷的去除,在pH=4~6时,溶液中砷的去除率较高,在此pH范围内提高铁砷比有利于砷的脱除;当溶液中铁砷比> 2时,溶液中砷的含量能够降低到0.5 mg·L-1以下。

    3) 常温下,在pH = 4~6、铁砷比> 2的条件下,得到的沉淀砷渣是非定型态的。通过提高铁砷比可以提高沉淀渣的稳定性,当铁砷比> 2时,渣的浸出毒性可以降低到5 mg·L-1以下。

  • 参考文献

    • 1

      CHEN D, GUO H, XU J, et al. Recovery of iron from pyrite cinder containing non-ferrous metals using high-temperature chloridizing-reduction-magnetic separation [J]. Metallurgical and Materials Transactions B, 2017, 48B: 933-942.

    • 2

      金程, 李登新. 硫酸烧渣中铁的综合利用研究进展[J]. 金属矿山, 2011(10): 162-165.

    • 3

      叶志平, 何国伟. 硫酸渣资源化及其以废治废技术研究[J]. 华南师范大学学报 (自然科学版), 2010, 42(2): 72-75.

    • 4

      王全亮. 某硫酸烧渣提纯降杂工艺试验研究[J].有色金属(选矿部分), 2009(5): 21-25.

    • 5

      LIN Z, QVARFORT U. Predicting the mobility of Zn, Fe, Cu, Pb, Cd from roasted sulfide (pyrite) residues: A case study of wastes from the sulfuric acid industry in Sweden [J]. Waste Management, 1997, 16: 671-681.

    • 6

      DING J, HAN P, LV C, et al. Utilization of gold-bearing and iron-rich pyrite cinder via a chlorination-volatilization process [J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(11): 1-10.

    • 7

      AIP I, DEVECI H, YAZICI E Y, et al. Potential use of pyrite cinders as raw material in cement production: Results of industrial scale trial operations [J]. Journal of Hazardous Materials, 2009, 166 (1): 144-149.

    • 8

      YANG C, CHEN Y, PENG P, et al. Trace element transformations and partitioning during the roasting of pyrite ores in the sulfuric acid industry [J]. Journal of Hazardous Materials, 2009, 167: 835-845.

    • 9

      GIUNTI M, BARONI D, BACCI E. Hazard assessment to workers of trace metal content in pyrite cinders [J]. Bulletin of Environmental Contamination and Toxicology, 2004, 72: 352-357.

    • 10

      LONG H, CHUN T, DI Z, et al. Preparation of metallic iron powder from pyrite cinder by carbothermic reduction and magnetic separation [J]. Metals, 2016, 6(4): 88-96.

    • 11

      ZHU D Q, CHUN T J, PAN J, et al. Preparation of oxidised pellets using pyrite cinders as raw material [J]. Ironmaking & Steelmaking, 2013, 40: 430-435.

    • 12

      WANG J, LUO L, KONG H, et al. The arsenic removal from molten steel [J]. High Temperature Materials and Processes, 2011, 30: 171-173.

    • 13

      WANG Y, XIAO L, LIU Y, et al. Alkalic leaching and stabilization of arsenic from pyrite cinders [J]. The Open Waste Management Journal, 2017, 10: 41-50.

    • 14

      常耀超, 徐晓辉, 王云. 高砷硫酸烧渣脱砷及高温氯化回收金银 [J]. 有色金属(冶炼部分), 2015(6): 46-49.

    • 15

      SHI Z, WANG M, ZHANG G, et al. Leaching and kinetic modeling of pyrite cinder in sulphuric acid [J]. Asian Journal of Chemistry, 2013, 25(1): 105-109.

    • 16

      张广伟, 徐政, 李岩. 利用含砷硫酸烧渣生产铁精矿的试验研究[J]. 矿业研究与开发, 2013, 33(1): 34-37.

    • 17

      CHOONG T, CHUAH T, ROBIAH Y, et al. Arsenic toxicity, health hazards and removal techniques from water: An overview [J]. Desalination, 2007, 217: 139-166.

    • 18

      游洋, 闵小波, 彭兵, 等. 碱性高砷渣晶化稳定处理技术研究 [J]. 有色金属科学与工程, 2015, 6(6): 24-28.

    • 19

      张明琴, 周新涛, 罗中秋, 等. 石灰-铁盐法处理工业含砷废水研究进展 [J]. 硅酸盐通报,2016, 35(8): 2447-2453.

    • 20

      KRAUSE E, ETTEL V. Solubilities and stabilities of ferric arsenate compounds [J]. Hydrometallurgy, 1989, 22(3): 311-337.

    • 21

      FUJITA T, TAGUCHI R, ABUMIYA M, et al.Effect of pH on atmospheric scorodite synthesis by oxidation of ferrous ions: Physical properties and stability of the scorodite [J]. Hydrometallurgy, 2009, 96: 189-198.

    • 22

      DAENZER R, XU L, DOERFELT C, et al. Precipitation behaviour of As(V) during neutralization of acidic Fe(II)-As(V) solutions in batch and continuous modes [J]. Hydrometallurgy, 2014, 146: 40-47.

    • 23

      SINGHANIA S, WANG Q, FILIPPOU D, et al. Acidity, valency and third-ion effects on the precipitation of scorodite from mixed sulfate solutions under atmospheric-pressure conditions [J]. Metallurgical and Materials Transactions B, 2006, 37(2): 189-197.

    • 24

      TWIDWELL L G, MCLOSKEY J W. Removing arsenic from aqueous solution and longterm product storage [J]. JOM, 2011, 63 (8): 94-100.

王永良

机 构:中国科学院过程工程研究所,多相复杂系统国家重点实验室,北京 100190

Affiliation:State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China

角 色:第一作者

角 色:通讯作者

Role:First author

Role:Corresponding author

邮 箱:ylwang84@ipe.ac.cn

第一作者简介:王永良(1984— ),男,博士,助理研究员。研究方向:固废资源综合利用。E-mail:ylwang84@ipe.ac.cn

肖力

机 构:

1. 中国科学院过程工程研究所,多相复杂系统国家重点实验室,北京 100190

2. 中国科学院大学化学与化工学院,北京 100049

Affiliation:

1. State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China

2. School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

韩培伟

机 构:中国科学院过程工程研究所,多相复杂系统国家重点实验室,北京 100190

Affiliation:State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China

鲁永刚

机 构:中国科学院过程工程研究所,多相复杂系统国家重点实验室,北京 100190

Affiliation:State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China

钱鹏

机 构:中国科学院过程工程研究所,多相复杂系统国家重点实验室,北京 100190

Affiliation:State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China

叶树峰

机 构:中国科学院过程工程研究所,多相复杂系统国家重点实验室,北京 100190

Affiliation:State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China

金曙光,郑晓梅,张利田

角 色:中文编辑

Role:Editor

FePbZnCuAsS
60.441.181.180.131.490.59
/html/teepc_cn/201807091/alternativeImage/caf3a397-ce7c-409f-8656-34a6bf2e6e75-F001.jpg
初始pH终点 pHFe浓度/(mg·L-1)As浓度/(mg·L-1)
1.11.051 7652 643
2.172.0724.12363.8
3.062.981.221175.6
4.034.080.52820.06
5.175.0815.29
6.026.0812.14
7.076.9625.44
初始pH终点 pHFe浓度/(mg·L-1)As浓度/(mg·L-1)
1.051.064 3972 232
2.092.11 154257
3.053.01230.711.71
4.084.12.6910.274
5.015.070.0270.208
6.096.040.182
7.197.140.684
初始pH终点 pHFe浓度/(mg·L-1)As浓度/(mg·L-1)
1.071.024 8592 146
2.12.113 783141.7
3.053.1172.310.53
4.24.022.00.106
5.25.040.2520.061
6.226.040.118
7.127.060.298
/html/teepc_cn/201807091/alternativeImage/caf3a397-ce7c-409f-8656-34a6bf2e6e75-F002.jpg
铁砷比pHAs浸出浓度/(mg.L-1)
16.02~6.0842.42
26.04~6.092.396
36.04~6.220.711

表1 硫酸烧渣的主要化学成分的质量分数

Table 1 Main chemical components of pyrite cinder %

图1 不同的浸出条件对砷去除的影响

Fig.1 Effect of different leaching conditions on arsenic removal

表2 Fe/As=1时不同pH条件下得到的除砷液中砷和铁的浓度

Table 2 Arsenic and iron concentration in solution after arsenic removal under different pH conditions when Fe/As = 1

表3 Fe/As=2时不同pH条件下得到的除砷液中砷的浓度

Table 3 Arsenic and iron concentration in solution after arsenic removal under different pH conditions when Fe/As = 2

表4 Fe/As=3时不同pH条件下得到的除砷液中砷的浓度

Table 4 Arsenic and iron concentration in solution after arsenic removal under different pH conditions when Fe/As = 3

图2 不同条件下沉淀得到的含砷渣的SEM图

Fig.2 SEM images of arsenic precipitation obtained under different conditions

表5 不同铁砷比条件下得到的沉淀渣的浸出毒性实验结果

Table 5 Toxicity test results of the arsenic precipitation under different conditions

image /

无注解

无注解

无注解

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      CHEN D, GUO H, XU J, et al. Recovery of iron from pyrite cinder containing non-ferrous metals using high-temperature chloridizing-reduction-magnetic separation [J]. Metallurgical and Materials Transactions B, 2017, 48B: 933-942.

    • 2

      金程, 李登新. 硫酸烧渣中铁的综合利用研究进展[J]. 金属矿山, 2011(10): 162-165.

    • 3

      叶志平, 何国伟. 硫酸渣资源化及其以废治废技术研究[J]. 华南师范大学学报 (自然科学版), 2010, 42(2): 72-75.

    • 4

      王全亮. 某硫酸烧渣提纯降杂工艺试验研究[J].有色金属(选矿部分), 2009(5): 21-25.

    • 5

      LIN Z, QVARFORT U. Predicting the mobility of Zn, Fe, Cu, Pb, Cd from roasted sulfide (pyrite) residues: A case study of wastes from the sulfuric acid industry in Sweden [J]. Waste Management, 1997, 16: 671-681.

    • 6

      DING J, HAN P, LV C, et al. Utilization of gold-bearing and iron-rich pyrite cinder via a chlorination-volatilization process [J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(11): 1-10.

    • 7

      AIP I, DEVECI H, YAZICI E Y, et al. Potential use of pyrite cinders as raw material in cement production: Results of industrial scale trial operations [J]. Journal of Hazardous Materials, 2009, 166 (1): 144-149.

    • 8

      YANG C, CHEN Y, PENG P, et al. Trace element transformations and partitioning during the roasting of pyrite ores in the sulfuric acid industry [J]. Journal of Hazardous Materials, 2009, 167: 835-845.

    • 9

      GIUNTI M, BARONI D, BACCI E. Hazard assessment to workers of trace metal content in pyrite cinders [J]. Bulletin of Environmental Contamination and Toxicology, 2004, 72: 352-357.

    • 10

      LONG H, CHUN T, DI Z, et al. Preparation of metallic iron powder from pyrite cinder by carbothermic reduction and magnetic separation [J]. Metals, 2016, 6(4): 88-96.

    • 11

      ZHU D Q, CHUN T J, PAN J, et al. Preparation of oxidised pellets using pyrite cinders as raw material [J]. Ironmaking & Steelmaking, 2013, 40: 430-435.

    • 12

      WANG J, LUO L, KONG H, et al. The arsenic removal from molten steel [J]. High Temperature Materials and Processes, 2011, 30: 171-173.

    • 13

      WANG Y, XIAO L, LIU Y, et al. Alkalic leaching and stabilization of arsenic from pyrite cinders [J]. The Open Waste Management Journal, 2017, 10: 41-50.

    • 14

      常耀超, 徐晓辉, 王云. 高砷硫酸烧渣脱砷及高温氯化回收金银 [J]. 有色金属(冶炼部分), 2015(6): 46-49.

    • 15

      SHI Z, WANG M, ZHANG G, et al. Leaching and kinetic modeling of pyrite cinder in sulphuric acid [J]. Asian Journal of Chemistry, 2013, 25(1): 105-109.

    • 16

      张广伟, 徐政, 李岩. 利用含砷硫酸烧渣生产铁精矿的试验研究[J]. 矿业研究与开发, 2013, 33(1): 34-37.

    • 17

      CHOONG T, CHUAH T, ROBIAH Y, et al. Arsenic toxicity, health hazards and removal techniques from water: An overview [J]. Desalination, 2007, 217: 139-166.

    • 18

      游洋, 闵小波, 彭兵, 等. 碱性高砷渣晶化稳定处理技术研究 [J]. 有色金属科学与工程, 2015, 6(6): 24-28.

    • 19

      张明琴, 周新涛, 罗中秋, 等. 石灰-铁盐法处理工业含砷废水研究进展 [J]. 硅酸盐通报,2016, 35(8): 2447-2453.

    • 20

      KRAUSE E, ETTEL V. Solubilities and stabilities of ferric arsenate compounds [J]. Hydrometallurgy, 1989, 22(3): 311-337.

    • 21

      FUJITA T, TAGUCHI R, ABUMIYA M, et al.Effect of pH on atmospheric scorodite synthesis by oxidation of ferrous ions: Physical properties and stability of the scorodite [J]. Hydrometallurgy, 2009, 96: 189-198.

    • 22

      DAENZER R, XU L, DOERFELT C, et al. Precipitation behaviour of As(V) during neutralization of acidic Fe(II)-As(V) solutions in batch and continuous modes [J]. Hydrometallurgy, 2014, 146: 40-47.

    • 23

      SINGHANIA S, WANG Q, FILIPPOU D, et al. Acidity, valency and third-ion effects on the precipitation of scorodite from mixed sulfate solutions under atmospheric-pressure conditions [J]. Metallurgical and Materials Transactions B, 2006, 37(2): 189-197.

    • 24

      TWIDWELL L G, MCLOSKEY J W. Removing arsenic from aqueous solution and longterm product storage [J]. JOM, 2011, 63 (8): 94-100.