单室双阳极微生物电解池利用氢发酵废水产氢

何盛东, 陈思, 樊耀亭. 单室双阳极微生物电解池利用氢发酵废水产氢[J]. 环境工程学报, 2019, 13(6): 1441-1448. doi: 10.12030/j.cjee.201808060
引用本文: 何盛东, 陈思, 樊耀亭. 单室双阳极微生物电解池利用氢发酵废水产氢[J]. 环境工程学报, 2019, 13(6): 1441-1448. doi: 10.12030/j.cjee.201808060
HE Shengdong, CHEN Si, FAN Yaoting. Hydrogen production from hydrogen fermentation effluent in single chamber microbial electrolysis cell with double anode arrangement[J]. Chinese Journal of Environmental Engineering, 2019, 13(6): 1441-1448. doi: 10.12030/j.cjee.201808060
Citation: HE Shengdong, CHEN Si, FAN Yaoting. Hydrogen production from hydrogen fermentation effluent in single chamber microbial electrolysis cell with double anode arrangement[J]. Chinese Journal of Environmental Engineering, 2019, 13(6): 1441-1448. doi: 10.12030/j.cjee.201808060

单室双阳极微生物电解池利用氢发酵废水产氢

  • 基金项目:

    国家自然科学基金资助项目21171147,50578148

    河南省高等学校重点科研项目17A560012国家自然科学基金资助项目(21171147,50578148)

    河南省高等学校重点科研项目(17A560012)

Hydrogen production from hydrogen fermentation effluent in single chamber microbial electrolysis cell with double anode arrangement

  • Fund Project:
  • 摘要: 为提高微生物电解池(MEC)利用氢发酵废水产氢速率,以丁酸为底物在微生物燃料电池(MFC)中驯化富集阳极产电微生物,采用单室双阳极MEC处理玉米秸秆的氢发酵废水,通过对关键过程参数的优化,实现氢发酵废水高效产氢。结果表明,当外加电压为0.8 V时,产氢速率和玉米秸秆氢发酵废水中COD的去除率分别达到(5.31±0.13) m3·(m3·d)-1和(58±2)%。其中,乙酸、丁酸、丙酸、乙醇的去除率分别达到(95±2)%、(76.2±0.8)%、(93±3)%、(98±1)%。与单室单阳极MEC相比,单室双阳极MEC利用玉米秸秆氢发酵废水进行深度产氢的速率提高了1.22倍。此外,MEC生物阳极驯化方式对MEC利用玉米秸秆氢发酵废水产氢具有重要影响。与利用乙酸为底物驯化富集的生物阳极相比,以丁酸为底物驯化富集的生物阳极去除COD的能力和MEC产氢速率都有提高。
  • 加载中
  • [1] KUMAR G, MUDHOO A, SIVAGURUNTHAN P, et al. Recent insights into the cell immobilization technology applied for dark fermentative hydrogen production[J]. Bioresource Technology, 2016, 219: 725-737.
    [2] GUO X M, TRABLY T, LATRILLE E, et al. Hydrogen production from agricultural waste by dark fermentation: A review[J]. International Journal of Hydrogen Energy, 2008, 33: 7013-7019.
    [3] 杏艳, 马红翠, 樊耀亭, 等. 秸秆类生物质发酵法生物产氢的研究[J]. 科学通报, 2009, 54(1): 1-7.
    [4] SONG Z X, WANG Z Y, WU L Y, et al. Effect of microwave irradiation pretreatment of cow dung compost on bio-hydrogen process from corn stalk by dark fermentation[J]. International Journal of Hydrogen Energy, 2012, 37: 6554-6561.
    [5] GOMZE X, FERNANDEZ C, FIERRO J, et al. Hydrogen production: Two stage processes for waste degradation[J]. Bioresource Technology, 2011, 102: 8621-8627.
    [6] MARONE A, AYALA-CAMPOS O R, TRABLY E, et al. Coupling dark fermentation and microbial electrolysis to enhance bio-hydrogen production from agro-industrial wastewaters and by-products in a bio-refinery framework[J]. International Journal of Hydrogen Energy, 2017, 42(3): 1609-1621.
    [7] LALAURETTE E, THAMMANNAGOWDA S, MOHAGHEGHI A, et al. Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogesis[J]. International Journal of Hydrogen Energy, 2009, 34: 6201-6210.
    [8] LU L, REN N Q, XING D F, et al. Hydrogen production with effluent from an ethanol-H2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell[J]. Biosensors and Bioelectronics, 2009, 24: 3055-3060.
    [9] LIU W Z, HUANG S C, ZHOU A J, et al. Hydrogen generation in microbial electrolysis cell feeding with fermentation liquid of waste activated sludge[J]. International Journal of Hydrogen Energy, 2012, 37: 13859-13864.
    [10] WANG A J, SUN D, CAO G L, et al. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell[J]. Bioresource Technology, 2011, 102: 4137-4143.
    [11] LIANG D W, PENG S K, LU S F, et al. Enhancement of hydrogen production in a single chamber microbial electrolysis cell through anode arrangement optimization[J]. Bioresource Technology, 2011, 102: 10881-10885.
    [12] LI X H, LIANG D W, BAI Y X, et al. Enhanced H2 production from corn stalk by integrating dark fermentation and single-chamber microbial electrolysis cells with double anode arrangement[J]. International Journal of Hydrogen Energy, 2014, 39(17): 8977-8982.
    [13] 吴婷婷, 朱葛夫, 邹然, 等. 发酵制氢废液的微生物电解池产氢[J]. 化工进展, 2013, 32(6):1435-1438.
    [14] CHENG S, LIU H, LOGAN B E. Increased performance of single-chamber microbial fuel cells using an improved cathode structure[J]. Electrochemistry Communications, 2006, 8: 489-494.
    [15] LI X, ZHANG R, ZHANG Y, et al. The impact of anode acclimation strategy on microbial electrolysis cell treating hydrogen fermentation effluent[J]. Bioresource Technology, 2017, 236: 37-43.
    [16] FANG Y, ZHANG G, GUO X Y, et al. Biohydrogen production from beer lees biomass by cow dung compost[J]. Biomass Bioenergy, 2006, 30: 493-496.
    [17] LOGAN B E, CALL D, CHENG S, et al. Microbial electrolysis cells (MECs) for high yield hydrogen gas production from organic matter[J]. Environmental Science & Technology, 2008, 42: 8630-8640.
    [18] LIU H,LOGAN B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane[J]. Environmental Science & Technology, 2004, 38: 4040-4046.
    [19] LU L, REN N Q, ZHAO X, et al. Hydrogen production, methanogen inhibition and microbial community structures in psychrophilic single-chamber microbial electrolysis cells[J]. Energy & Environmental Science, 2011, 4: 1329-1336.
  • 加载中
计量
  • 文章访问数:  2292
  • HTML全文浏览数:  2227
  • PDF下载数:  92
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-06-18

单室双阳极微生物电解池利用氢发酵废水产氢

  • 1. 郑州航空工业管理学院土木建筑学院,郑州 450006
  • 2. 郑州大学化学与分子工程学院,郑州 450001
基金项目:

国家自然科学基金资助项目21171147,50578148

河南省高等学校重点科研项目17A560012国家自然科学基金资助项目(21171147,50578148)

河南省高等学校重点科研项目(17A560012)

摘要: 为提高微生物电解池(MEC)利用氢发酵废水产氢速率,以丁酸为底物在微生物燃料电池(MFC)中驯化富集阳极产电微生物,采用单室双阳极MEC处理玉米秸秆的氢发酵废水,通过对关键过程参数的优化,实现氢发酵废水高效产氢。结果表明,当外加电压为0.8 V时,产氢速率和玉米秸秆氢发酵废水中COD的去除率分别达到(5.31±0.13) m3·(m3·d)-1和(58±2)%。其中,乙酸、丁酸、丙酸、乙醇的去除率分别达到(95±2)%、(76.2±0.8)%、(93±3)%、(98±1)%。与单室单阳极MEC相比,单室双阳极MEC利用玉米秸秆氢发酵废水进行深度产氢的速率提高了1.22倍。此外,MEC生物阳极驯化方式对MEC利用玉米秸秆氢发酵废水产氢具有重要影响。与利用乙酸为底物驯化富集的生物阳极相比,以丁酸为底物驯化富集的生物阳极去除COD的能力和MEC产氢速率都有提高。

English Abstract

参考文献 (19)

目录

/

返回文章
返回