给水厂铁铝泥构建过滤柱去除富营养化河水中过量磷

刘新, 左小凡, 吴禹, 王梦皎, 赵珍, 蒋豫. 给水厂铁铝泥构建过滤柱去除富营养化河水中过量磷[J]. 环境工程学报, 2019, 13(4): 784-791. doi: 10.12030/j.cjee.201809152
引用本文: 刘新, 左小凡, 吴禹, 王梦皎, 赵珍, 蒋豫. 给水厂铁铝泥构建过滤柱去除富营养化河水中过量磷[J]. 环境工程学报, 2019, 13(4): 784-791. doi: 10.12030/j.cjee.201809152
LIU Xin, ZUO Xiaofan, WU Yu, WANG Mengjiao, ZHAO Zhen, JIANG Yu. Removal of excessive phosphorus from eutrophic river water by filtration columns constructed with ferric and aluminum sludge[J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 784-791. doi: 10.12030/j.cjee.201809152
Citation: LIU Xin, ZUO Xiaofan, WU Yu, WANG Mengjiao, ZHAO Zhen, JIANG Yu. Removal of excessive phosphorus from eutrophic river water by filtration columns constructed with ferric and aluminum sludge[J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 784-791. doi: 10.12030/j.cjee.201809152

给水厂铁铝泥构建过滤柱去除富营养化河水中过量磷

  • 基金项目:

    江苏省研究生科研与实践创新计划项目KYCX17_0823

    江苏高校优势学科建设工程资助项目PAPD江苏省研究生科研与实践创新计划项目(KYCX17_0823)

    江苏高校优势学科建设工程资助项目(PAPD)

Removal of excessive phosphorus from eutrophic river water by filtration columns constructed with ferric and aluminum sludge

  • Fund Project:
  • 摘要: 为避免因FAS释放过量有机物和氮而产生的潜在不利影响,分析了以给水厂铁铝泥(FAS)构建过滤柱处理富营养化河水的特征与机制,研究了以厌氧热处理改性后的FAS作为辅助基质(2%)构建过滤柱。结果表明:在对其他性质无影响的情况下,FAS的添加显著提高了过滤柱对水体中磷的去除率,促使出水磷浓度在整个运行期间小于0.01 mg·L-1;被FAS吸附的磷主要以NaOH提取态、HCl可提取态和残渣态存在。高通量测序分析结果表明,FAS的添加促使过滤柱中富集了Rhodoplanes、Sulfuritalea、Nitrospira、Leucobacter、Geobacter、Dechloromonas等有助于生物地球化学循环和复合污染控制的菌群。FAS作为辅助基质构建过滤柱可有效控制富营养化河水中磷污染。
  • 加载中
  • [1] 仇付国, 张传挺. 水厂铝污泥资源化利用及污染物控制机理[J]. 环境科学与技术, 2015, 38(4): 21-26.
    [2] DASSANAYAKE K B, JAYASINGHE G Y, SURAPANENI A, et al. A review on alum sludge reuse with special reference to agricultural applications and future challenges[J]. Waste Management, 2015, 38: 321-335.
    [3] 李怀正, 洪祖喜, 邢绍文, 等. 对上海给水厂污泥处理的规划设想[J]. 给水排水, 2005, 31(12): 18-20.
    [4] IPPOLITO J A, BARBARICK K A, ELLIOTT H A. Drinking water treatment residuals: A review of recent uses[J]. Journal of Environmental Quality, 2011, 40: 1-12.
    [5] 赵媛媛, 裴元生, 向仁军, 等. 施用给水厂残泥对南北方不同类型农田土壤质量的影响[J]. 环境科学研究, 2016, 29(10): 1497-1505.
    [6] HU Y, ZHAO Y, ZHAO X, et al. High rate nitrogen removal in an alum sludge-based intermittent aeration constructed wetland[J]. Environmental Science & Technology, 2012, 46: 4583-4590.
    [7] WANG C H, GAO S J, PEI Y S, et al. Use of drinking water treatment residuals to control the internal phosphorus loading from lake sediments: Laboratory scale investigation[J]. Chemical Engineering Journal, 2013, 225: 93-99.
    [8] ZHAO Y Q. Constructive approaches toward water treatment works sludge management: An international review of beneficial reuses[J]. Critical Reviews in Environmental Science & Technology, 2007, 37(2): 129-164.
    [9] PARK W H. Integrated constructed wetland systems employing alum sludge and oyster shells as filter media for P removal[J]. Ecological Engineering, 2009, 35: 1275-1282.
    [10] BAI LL, WANG C H, HUANG C, et al. Reuse of drinking water treatment residuals as a substrate in constructed wetlands for sewage tertiary treatment[J]. Ecological Engineering, 2014, 70: 295-303.
    [11] IPPOLITO J A. Aluminum-based water treatment residual use in a constructed wetland for capturing urban runoff phosphorus: Column study[J]. Water, Air and Soil Pollution, 2015, 226: 334-335.
    [12] CARPENTER S R. Eutrophication of aquatic ecosystems: Bistability and soil phosphorus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102: 10002-10005.
    [13] ULRICH A E, MALLEY D F, WATTS P D. Lake Winnipeg basin: Advocacy, challenges and progress for sustainable phosphorus and eutrophication control[J]. Science of the Total Environment, 2016, 542: 1030-1039
    [14] 魏星, 朱伟, 赵联芳, 等. 植物秸秆作补充碳源对人工湿地脱氮效果的影响[J]. 湖泊科学, 2010, 22(6): 916-922.
    [15] MARTíN M, OLIVER N, HERNáNDEZ-CRESPO C, et al. The use of free water surface constructed wetland to treat the eutrophicated waters of lake L'Albufera de Valencia (Spain)[J]. Ecological Engineering, 2013, 50: 52-61.
    [16] CAMARGO J A, á ALONSO. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment[J]. Environment International, 2006, 32: 831-849.
    [17] 马世豪, 何星海. 《城镇污水处理厂污染物排放标准》浅释[J]. 给水排水, 2003, 29(9): 89-94.
    [18] LIU R, ZHAO Y, SIBILLE C, et al. Evaluation of natural organic matter release from alum sludge reuse in wastewater treatment and its role in P adsorption[J]. Chemical Engineering Journal, 2016, 302: 120-127.
    [19] CHRISTOPHORIDIS C, FYTIANOS K. Conditions affecting the release of phosphorus from surface lake sediments[J]. Journal of Environmental Quality, 2006, 35: 1181-1192.
    [20] WANG C H, WU Y, BAI L, et al. Intermittent aeration incubation of drinking water treatment residuals for recycling in aquatic environment remediation[J]. Journal of Cleaner Production, 2018, 183: 220-230.
    [21] 叶琳琳, 吴晓东, 孔繁翔, 等. 太湖入湖河流溶解性有机碳来源及碳水化合物生物可利用性[J]. 环境科学, 2015, 36(3): 914-921.
    [22] GAO S J, WANG C H, PEI Y S. Comparison of different phosphate species adsorption by ferric and alum water treatment residuals[J]. Journal of Environmental Sciences, 2013, 25: 986-992.
    [23] WANG C H, GUO W, GAO S J, et al. Behaviors of phosphate adsorption onto ferric and alum water treatment residuals[J]. Fresenius Environmental Bulletin, 2014, 23: 2068-2073.
    [24] MAKRIS K C, HARRIS W G, O'CONNO G A, et al. Phosphorus immobilization in micropores of drinking-water treatment residuals: Implications for long-term stability[J]. Environmental Science & Technology, 2005, 38: 6590-6596.
    [25] KOJIMA H, FUKUI M. Sulfuritalea hydrogenivorans gen. nov., sp. nov., a facultative autotroph isolated from a freshwater lake[J]. International Journal of Systematic and Evolutionary Microbiology, 2011, 61: 1651-1655.
    [26] OKAMURA K, KANBE T, HIRAISHI A. Rhodoplanes serenus sp. nov., a purple non-sulfur bacterium isolated from pond water[J]. International Journal of Systematic and Evolutionary Microbiology, 2009, 59: 531-535.
    [27] 曾薇, 张丽敏, 王安其, 等. 污水处理系统中硝化菌的菌群结构和动态变化[J]. 中国环境科学, 2015, 35(11): 3257-3260.
    [28] AGRAWAL S, KARST S M, GILBERT E M, et al. The role of inoculum and reactor configuration for microbial community composition and dynamics in mainstream partial nitritation anammox reactors[J]. Microbiology Open, 2017, 6(4): e00456.
    [29] 马泽民, 朱文杰, 柴立元. Leucobacter spp.菌株Ch1还原高浓度Cr(Ⅵ)的研究[J]. 环境污染与防治, 2008, 30(6): 1-4.
    [30] 黎慧娟, 彭静静. 异化Fe(Ⅲ)还原微生物研究进展[J]. 生态学报, 2012, 32(5): 1633-1642.
    [31] FLYNN J L, CHAN J, TRIEBOLD K J, et al. An essential role for interferon gamma in resistance to mycobacterium tuberculosis infection[J]. Journal of Experimental Medicine, 1993, 178: 2249-2254.
  • 加载中
计量
  • 文章访问数:  3132
  • HTML全文浏览数:  2940
  • PDF下载数:  186
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-04-15

给水厂铁铝泥构建过滤柱去除富营养化河水中过量磷

  • 1. 南京林业大学生物与环境学院,南京210037
  • 2. 江苏省生态环境评估中心江苏省排污权登记与交易管理中心,南京210036
基金项目:

江苏省研究生科研与实践创新计划项目KYCX17_0823

江苏高校优势学科建设工程资助项目PAPD江苏省研究生科研与实践创新计划项目(KYCX17_0823)

江苏高校优势学科建设工程资助项目(PAPD)

摘要: 为避免因FAS释放过量有机物和氮而产生的潜在不利影响,分析了以给水厂铁铝泥(FAS)构建过滤柱处理富营养化河水的特征与机制,研究了以厌氧热处理改性后的FAS作为辅助基质(2%)构建过滤柱。结果表明:在对其他性质无影响的情况下,FAS的添加显著提高了过滤柱对水体中磷的去除率,促使出水磷浓度在整个运行期间小于0.01 mg·L-1;被FAS吸附的磷主要以NaOH提取态、HCl可提取态和残渣态存在。高通量测序分析结果表明,FAS的添加促使过滤柱中富集了Rhodoplanes、Sulfuritalea、Nitrospira、Leucobacter、Geobacter、Dechloromonas等有助于生物地球化学循环和复合污染控制的菌群。FAS作为辅助基质构建过滤柱可有效控制富营养化河水中磷污染。

English Abstract

参考文献 (31)

目录

/

返回文章
返回