EVO(乳化油)-Mg(OH)2双功能缓释剂强化修复三氯乙烯污染地下水

于东雪, 董军, 刘艳超, 其布日. EVO(乳化油)-Mg(OH)2双功能缓释剂强化修复三氯乙烯污染地下水[J]. 环境工程学报, 2019, 13(4): 885-893. doi: 10.12030/j.cjee.201809168
引用本文: 于东雪, 董军, 刘艳超, 其布日. EVO(乳化油)-Mg(OH)2双功能缓释剂强化修复三氯乙烯污染地下水[J]. 环境工程学报, 2019, 13(4): 885-893. doi: 10.12030/j.cjee.201809168
YU Dongxue, DONG Jun, LIU Yanchao, QI Buri. Enhanced remediation of TCE contaminated groundwater by double sustained-release agent of EVO (emulsified vegetable oil)-Mg(OH)2[J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 885-893. doi: 10.12030/j.cjee.201809168
Citation: YU Dongxue, DONG Jun, LIU Yanchao, QI Buri. Enhanced remediation of TCE contaminated groundwater by double sustained-release agent of EVO (emulsified vegetable oil)-Mg(OH)2[J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 885-893. doi: 10.12030/j.cjee.201809168

EVO(乳化油)-Mg(OH)2双功能缓释剂强化修复三氯乙烯污染地下水

  • 基金项目:

    国家自然科学基金资助项目41602252国家自然科学基金资助项目(41602252)

Enhanced remediation of TCE contaminated groundwater by double sustained-release agent of EVO (emulsified vegetable oil)-Mg(OH)2

  • Fund Project:
  • 摘要: 氯代烃污染地下水在外加有机质(电子供体)进行强化还原脱氯时,存在有机质消耗快、pH持续降低等影响脱氯效率的问题。利用乳化油(EVO)与胶体氢氧化镁复配的方法,制备了一种兼具电子供体缓释性和OH-缓释性的双功能缓释剂EVO-Mg(OH)2;成功制备了不同EVO∶Mg(OH)2配比的EVO-Mg(OH)2试剂,并对其稳定性、分散性及粒径分布进行了研究;向模拟砂柱中注入不同体积的EVO-Mg(OH)2,考察试剂的迁移性能以及试剂注入对三氯乙烯(TCE)迁移的影响;开展了EVO-Mg(OH)2强化TCE还原脱氯摇瓶实验,考察了该试剂对脱氯效果的影响。结果表明:不同EVO∶Mg(OH)2配比的试剂稳定性及分散性良好,粒径无明显差异;EVO-Mg(OH)2可以有效地在多孔介质中迁移并实现部分滞留;注入量对EVO-Mg(OH)2的迁移性有一定的影响;EVO-Mg(OH)2可以促进TCE溶解和迁移从而减小EVO-Mg(OH)2和TCE之间的传质阻力;EVO-Mg(OH)2能够实现电子供体及OH-的双重缓释,有效促进脱氯微生物的生长,提高TCE的降解速率(k=0.128 d-1),同时抑制pH的降低(pH=7.5)。
  • 加载中
  • [1] KUBE M, BECK A, ZINDER S H, et al. Genome sequence of the chlorinated compound-respiring bacterium Dehalococcoides species strain CBDB1[J]. Nature Biotechnology, 2005, 23(10): 1269-1273.
    [2] AHMAD A, GU X, LI L, et al. Efficient degradation of trichloroethylene in water using persulfate activated by reduced graphene oxide-iron nanocomposite[J]. Environmental Science & Pollution Research International, 2015, 22(22): 17876-17885.
    [3] WANG S K. In situ chemical oxidation of TCE-contaminated groundwater using slow permanganate-releasing material[J]. Tetrahedron Letters, 2011, 16(27): 2249-2252.
    [4] HUG L A, BEIKO R G, ROWE A R, et al. Comparative metagenomics of three Dehalococcoides-containing enrichment cultures: The role of the non-dechlorinating community[J]. BMC Genomics, 2012, 13(1): 327.
    [5] 李海军. 三氯乙烯污染地下水厌氧生物修复研究[D]. 长春: 吉林大学, 2016.
    [6] PANT P, PANT S. A review: Advances in microbial remediation of trichloroethylene (TCE)[J]. Journal of Environmental Science, 2010, 22(1): 116-126.
    [7] AZIZIAN M F, MARSHALL I P G, BEHRENS S, et al. Comparison of lactate, formate, and propionate as hydrogen donors for the reductive dehalogenation of trichloroethene in a continuous-flow column[J]. Journal of Contaminant Hydrology, 2010, 113(1): 77-92.
    [8] LIANG S H, KUO Y C, CHEN S H, et al. Development of a slow polycolloid-releasing substrate (SPRS) biobarrier to remediate TCE-contaminated aquifers[J]. Journal of Hazardous Materials, 2013, 254-255(1): 107-115.
    [9] LUTES C C, LILES D S, SUTHERSAN S S, et al. Comment on “Comparison between donor substrates for biologically enhanced tetrachloroethene DNAPL dissolution”[J]. Environmental Science & Technology, 2003, 36(15): 3400-3404.
    [10] HARKNESS M, FISHER A. Use of emulsified vegetable oil to support bioremediation of TCE DNAPL in soil columns[J]. Journal of Contaminant Hydrology, 2013, 151(5): 16-33.
    [11] PHILIPS J, MAES N, SPRINGAEL D, et al. Acidification due to microbial dechlorination near a trichloroethene DNAPL is overcome with pH buffer or formate as electron donor: Experimental demonstration in diffusion-cells[J]. Journal of Contaminant Hydrology, 2013, 147(2): 25-33.
    [12] HIORTDAHL K M, BORDEN R C. Enhanced reductive dechlorination of tetrachloroethene dense nonaqueous phase liquid with EVO and Mg(OH)2[J]. Environmental Science & Technology, 2014, 48(1): 624-631.
    [13] PISHTSHEV A, KARAZHANOV S Z, KLOPOV M. Materials properties of magnesium and calcium hydroxides from first-principles calculations[J]. Computational Materials Science, 2014, 95(1/2/3/4): 693-705.
    [14] KAMEDA T, TAKEUCHI H, YOSHIOKA T. Preparation of organic acid anion-modified magnesium hydroxides by coprecipitation: A novel material for the uptake of heavy metal ions from aqueous solutions[J]. Journal of Physics & Chemistry of Solids, 2009, 70(7): 1104-1108.
    [15] DONG J, YU J, BAO Q. Simulated reactive zone with emulsified vegetable oil for the long-term remediation of Cr(VI)-contaminated aquifer: Dynamic evolution of geological parameters and groundwater microbial community[J]. Environmental Science and Pollution Research, 2018, 25(34): 34392-34402.
    [16] 沈丽, 王益民, 李淑民. 复合生物柴油乳化油的制备及其稳定性研究[J]. 科学技术与工程, 2008, 8(13): 3601-3602.
    [17] AULENTA F, MAJONE M, TANDOI V. Enhanced anaerobic bioremediation of chlorinated solvents: environmental factors influencing microbial activity and their relevance under field conditions[J]. Journal of Chemical Technology & Biotechnology,2010, 81(9): 1463-1474.
    [18] GABITTO J, TSOURIS C. Surface transport processes in charged porous media[J]. Colloid Interface Science, 2017, 498: 91-104.
    [19] MCCARTY P L, CHU M Y, KITANIDIS P K. Electron donor and pH relationships for biologically enhanced dissolution of chlorinated solvent DNAPL in groundwater[J]. European Journal of Soil Biology, 2007, 43(5/6): 276-282.
    [20] DONG J, LI B, BAO Q. In situ reactive zone with modified Mg(OH)2 for remediation of heavy metal polluted groundwater: Immobilization and interaction of Cr(III), Pb(II) and Cd(II)[J]. Journal of Contaminant Hydrology, 2017, 199: 50-57.
    [21] LI B, WEN C, DONG J. Study on the stability, transport behavior and OH- release properties of colloidal Mg(OH)2[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2018, 549(1): 105-111.
    [22] 陈星欣, 苏世灼, 张清林. 多孔介质中反复注入颗粒迁移特性试验[J]. 水利水电科技进展, 2017, 37(5): 64-68.
    [23] 刘雪松, 蔡五田, 李胜涛. 土壤与地下水中DNAPL的污染机理与调查技术[J]. 油气田环境保护, 2011, 21(6): 37-39.
  • 加载中
计量
  • 文章访问数:  3033
  • HTML全文浏览数:  2871
  • PDF下载数:  189
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-04-15

EVO(乳化油)-Mg(OH)2双功能缓释剂强化修复三氯乙烯污染地下水

  • 1. 吉林大学新能源与环境学院,地下水资源与环境教育部重点实验室,长春130021
基金项目:

国家自然科学基金资助项目41602252国家自然科学基金资助项目(41602252)

摘要: 氯代烃污染地下水在外加有机质(电子供体)进行强化还原脱氯时,存在有机质消耗快、pH持续降低等影响脱氯效率的问题。利用乳化油(EVO)与胶体氢氧化镁复配的方法,制备了一种兼具电子供体缓释性和OH-缓释性的双功能缓释剂EVO-Mg(OH)2;成功制备了不同EVO∶Mg(OH)2配比的EVO-Mg(OH)2试剂,并对其稳定性、分散性及粒径分布进行了研究;向模拟砂柱中注入不同体积的EVO-Mg(OH)2,考察试剂的迁移性能以及试剂注入对三氯乙烯(TCE)迁移的影响;开展了EVO-Mg(OH)2强化TCE还原脱氯摇瓶实验,考察了该试剂对脱氯效果的影响。结果表明:不同EVO∶Mg(OH)2配比的试剂稳定性及分散性良好,粒径无明显差异;EVO-Mg(OH)2可以有效地在多孔介质中迁移并实现部分滞留;注入量对EVO-Mg(OH)2的迁移性有一定的影响;EVO-Mg(OH)2可以促进TCE溶解和迁移从而减小EVO-Mg(OH)2和TCE之间的传质阻力;EVO-Mg(OH)2能够实现电子供体及OH-的双重缓释,有效促进脱氯微生物的生长,提高TCE的降解速率(k=0.128 d-1),同时抑制pH的降低(pH=7.5)。

English Abstract

参考文献 (23)

目录

/

返回文章
返回