3种固定式填料在中试IFAS系统中的性能比较及菌群结构解析

杨雅琼, 徐相龙, 韦琦, 王园园, 查亦飞, 莫惠珺, 王明玥, 余雨, 刘国华, 王洪臣. 3种固定式填料在中试IFAS系统中的性能比较及菌群结构解析[J]. 环境工程学报, 2019, 13(6): 1338-1349. doi: 10.12030/j.cjee.201810002
引用本文: 杨雅琼, 徐相龙, 韦琦, 王园园, 查亦飞, 莫惠珺, 王明玥, 余雨, 刘国华, 王洪臣. 3种固定式填料在中试IFAS系统中的性能比较及菌群结构解析[J]. 环境工程学报, 2019, 13(6): 1338-1349. doi: 10.12030/j.cjee.201810002
YANG Yaqiong, XU Xianglong, WEI Qi, WANG Yuanyuan, ZHA Yifei, MO Huijun, WANG Mingyue, YU Yu, LIU Guohua, WANG Hongchen. Performance comparison and microbial community structure analysis of three fixed fillers in pilot IFAS system[J]. Chinese Journal of Environmental Engineering, 2019, 13(6): 1338-1349. doi: 10.12030/j.cjee.201810002
Citation: YANG Yaqiong, XU Xianglong, WEI Qi, WANG Yuanyuan, ZHA Yifei, MO Huijun, WANG Mingyue, YU Yu, LIU Guohua, WANG Hongchen. Performance comparison and microbial community structure analysis of three fixed fillers in pilot IFAS system[J]. Chinese Journal of Environmental Engineering, 2019, 13(6): 1338-1349. doi: 10.12030/j.cjee.201810002

3种固定式填料在中试IFAS系统中的性能比较及菌群结构解析

  • 基金项目:

    中国人民大学2018年度“中央高校建设世界一流大学学科中国人民大学2018年度“中央高校建设世界一流大学(学科)和特色发展引导专项资金”支持

Performance comparison and microbial community structure analysis of three fixed fillers in pilot IFAS system

  • Fund Project:
  • 摘要: 为考察固定式填料在生物膜-活性污泥工艺(IFAS)中的性能和菌群结构,选取弹性立体填料、组合填料以及自制填料3种固定式填料投入中试级别的IFAS反应器好氧池中进行对比,另于小试系统中进行3种填料的脱膜实验。结果表明:组合填料的亲水性最高(接触角为38°),生物膜厚且致密,加上结点的存在,易结团,脱膜率最高为63%;弹性填料21 d基本可以完成生物膜的更新;而自制填料脱膜速率先快后慢,第24 天时脱膜率高达80%。在系统运行期间,3种填料对COD、氨氮去除率均在90%以上,出水均达到一级A排放标准。自制填料和组合填料系统的总氮去除率高于弹性填料。当自制填料系统运行27 d以后,TN出水可稳定达到一级A排放标准。与组合填料和弹性填料相比,由于自制填料结构的特殊性,其负载的生物量最多,生物多样性最高,同时,对硝化细菌、反硝化菌和反硝化除磷菌均表现出富集优势。
  • 加载中
  • [1] 念兴宇. 基于分子生物学技术的IFAS系统不同季节下菌群结构及关键硝化细菌变化研究[D]. 上海: 华东师范大学, 2015.
    [2] PEHRSON R L, MCDOWELL C. Integrated fixed-film activated sludge (IFAS) technology for WWTP upgrades[J]. Proceedings of the Water Environment Federation, 2002, 12: 387-398.
    [3] 刘晋旭, 刘振鸿. 复合式生物处理系统的研究与应用[J]. 工业水处理, 2003, 23(1): 8-11.
    [4] ZIELI?SKI M, ZIELI?SKA M, D?BOWSKI M. Application of microwave radiation to biofilm heating during wastewater treatment in trickling filters[J]. Bioresource Technology, 2013, 127(1): 223-230.
    [5] ODEGAARD H, RUSTEN B, WESTRUM T. A new moving bed biofilm reactor-applications and results[J]. Water Science & Technology, 1994, 29(10): 157-165.
    [6] 曹相生. 生物膜反应器设计与运行手册[M]. 北京: 中国建筑工业出版社, 2013.
    [7] MCQUARRIE J, RUTT K, SEDA J, et al. Observations from the first year of full-scale operation: The IFAS/BNR process at the broomfield wastewater reclamation facility, broomfield, CO[J]. Proceedings of the Water Environment Federation, 2004, 2004, 7: 274-285.
    [8] PSALTAKIS E P, LIUBICICH J, PITT P, et al. Demonstration of integrated fixed film activated sludge process for BNR at the mamaroneck WWTP[J]. Proceedings of the Water Environment Federation, 2003, 6: 120-141.
    [9] 胡小兵, 朱荣芳, 唐素兰, 等. 不同负荷下生物膜脱落与载体生物膜生物特性的相互影响[J]. 环境科学学报, 2017, 37(8): 2925-2935.
    [10] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
    [11] 马兆昆. 炭纤维的微生物固着机制及在污水处理中的应用研究[D]. 北京: 北京化工大学, 2003.
    [12] 国家环境保护总局. 城镇污水处理厂污染物排放标准: GB 18918-2002[S]. 北京: 中国环境出版社, 2002.
    [13] 杨东方, 齐崴, 苏荣欣, 等. 填料表面亲水改性对MBBR处理船舶生活污水的影响[J]. 环境工程学报, 2014, 8(5): 1895-1898.
    [14] 陈耀章. 接触氧化填料问题的探讨[J]. 石油化工环境保护, 1992(3): 5-9.
    [15] 刘洪波, 孙力平, 夏四清. 生物膜中反硝化除磷作用的研究[J]. 工业用水与废水, 2006, 37(1): 40-43.
    [16] 殷峻, NICOLAS D, ETIENNE P. 限制基质条件下生物膜特性的研究[J]. 中国给水排水, 2012, 28(1): 24-27.
    [17] 顾佳艳, 何国富, 林楠. 固定膜-活性污泥系统细菌多样性及脱氮关键菌研究[J]. 环境工程, 2016, 34(8): 36-39.
    [18] CéBRON A, COCI M, GARNIER J, et al. Denaturing gradient gel electrophoretic analysis of ammonia-oxidizing bacterial community structure in the lower Seine River: Impact of Paris wastewater effluents[J]. Applied and Environmental Microbiology, 2004, 70(11): 6726-6737.
    [19] VIANCELLI A, KUNZ A, ESTEVES P A, et al. Bacterial biodiversity from an anaerobic up flow bioreactor with ANAMMOX activity inoculated with swine sludge[J]. Brazilian Archives of Biology & Technology, 2011, 54(5): 1035-1041.
    [20] MERBT S N, AUGUET J C, BLESA A, et al. Wastewater treatment plant effluents change abundance and composition of ammonia-oxidizing microorganisms in mediterranean urban stream biofilms[J]. Microbial Ecology, 2015, 69(1): 66-74.
    [21] KINH C T, AHN J, SUENAGA T, et al. Free nitrous acid and pH determine the predominant ammonia-oxidizing bacteria and amount of N2O in a partial nitrifying reactor[J]. Applied Microbiology and Biotechnology, 2017, 101(4): 1673-1683.
    [22] 李青, 成小英. 不同填料生物反应器中脱氮微生物群落比较分析[J]. 安全与环境学报, 2017, 17(6): 2360-2365.
    [23] 黄菲, 梅晓洁, 王志伟, 等. 冬季低温下MBR与CAS工艺运行及微生物群落特征[J]. 环境科学, 2014, 35(3): 1002-1008.
    [24] CHU Z R, WANG K, LI X K, et al. Microbial characterization of aggregates within a one-stage nitritation-anammox system using high-throughput amplicon sequencing[J]. Chemical Engineering Journal, 2015, 262: 41-48.
    [25] XU X L, LIU G H, WANG Y Y, et al. Analysis of key microbial community during the start-up of anaerobic ammonium oxidation process with paddy soil as inoculated sludge[J]. Journal of Environmental Sciences, 2018, 64(2): 317-327.
    [26] HUANG S, RONG H, LIN M. Effect of pH value on distribution of dissolved oxygen (DO) during simultaneous nitrification and denitrification( SND) in biofilm[J]. Chinese Journal of Environmental Engineering, 2015, 9(9): 4233-4238.
    [27] WON S G, JEON D Y, KWAG J H, et al. Nitrogen removal from milking center wastewater via simultaneous nitrification and denitrification using a biofilm filtration reactor[J]. Asian Australasian Journal of Animal Sciences, 2015, 28(6): 896-902.
    [28] WANG B, YANG Q, LIU R, et al. A study of simultaneous organics and nitrogen removal by extended aeration submerged biofilm process[J]. Water Science & Technology, 2011, 24(5): 197-213.
    [29] SHE Z L, ZHANG X L, GAO M, et al. Effect of salinity on nitrogen removal by simultaneous nitrification and denitrification in a sequencing batch biofilm reactor[J]. Desalination & Water Treatment, 2016, 57(16): 7378-7386.
    [30] 冯翠杰, 王淑梅, 陈少华. 复合生物膜-活性污泥反应器同步脱氮除磷[J]. 环境工程学报, 2012, 6(9): 3106-3114.
    [31] 王春香, 刘常敬, 郑林雪, 等. 厌氧氨氧化耦合脱氮系统中反硝化细菌研究[J]. 中国环境科学, 2014, 34(7): 1878-1883.
    [32] 郑林雪, 李军, 胡家玮, 等. 同步硝化反硝化系统中反硝化细菌多样性研究[J]. 中国环境科学, 2015, 35(1): 116-121.
    [33] MERGAERT J, CNOCKAERT M C, SWINGS J. Thermomonas fusca sp. nov. and Thermomonas brevis sp. nov. two mesophilic species isolated from a denitrification reactor with poly(epsilon-caprolactone) plastic granules as fixed bed, and emended description of the genus Thermomonas[J]. International Journal of Systematic & Evolutionary Microbiology, 2003, 53(6): 1961-1966.
    [34] WOOD A P, KELLY D P. Physiological characteristics of a new thermophilic obligately chemolithotrophic thiobacillus species, thiobacillus tepidarius[J]. International Journal of Systematic Bacteriology, 1985, 35(4): 434-437.
    [35] MAO Y, ZHANG X, XI X, et al. Versatile aromatic compound-degrading capacity and microdiversity of Thauera, strains isolated from a coking wastewater treatment bioreactor[J]. Journal of Industrial Microbiology & Biotechnology, 2010, 37(9): 927-934.
    [36] MECHICHI T, STACKEBRANDT E, GAD'On N, et al. Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of Thauera phenylacetica sp. nov., Thauera aminoaromatica sp. nov. and Azoarcus buckelii sp. nov. [J]. Archives of Microbiology, 2002, 178(1): 26-35.
    [37] THOMSEN T R, KONG Y, NIELSEN P H. Ecophysiology of abundant denitrifying bacteria in activated sludge[J]. FEMS Microbiology Ecology, 2007, 60(3): 370-382.
    [38] VALLE A, BAILEY M J, WHITELEY A S, et al. N-acyl-l-homoserine lactones (AHLs) affect microbial community composition and function in activated sludge[J]. Environmental Microbiology, 2004, 6(4): 424-433.
    [39] FOESEL B U, DRAKE H L, SCHRAMM A. Defluviimonas denitrificans gen. nov. sp. nov. and Pararhodobacter aggregans gen. nov. sp. nov. non-phototrophic Rhodobacteraceae from the biofilter of a marine aquaculture[J]. Systematic & Applied Microbiology, 2011, 34(7): 498-502.
    [40] 郭丽芸, 时飞, 杨柳燕. 反硝化菌功能基因及其分子生态学研究进展[J]. 微生物学通报, 2011, 38(1): 583-590.
    [41] HEYLEN K, VANPARYS B, WITTEBOLLE L, et al. Cultivation of denitrifying bacteria: Optimization of isolation conditions and diversity study[J]. Applied and Environmental Microbiology, 2006, 72(4): 2637-2643.
    [42] 库辉. 反硝化除磷菌的生物特性及除磷功能基因的表达研究[D]. 武汉: 武汉理工大学, 2014.
    [43] RODRíGUEZ-MARTíNEZ S, DEKEL A, AIZENBERG-GERSHTEIN Y, et al. Characterization of biofilm bacterial communities in a vertical unsaturated-flow bioreactor treating domestic greywater[J]. Environmental Processes, 2016, 3(2): 1-16.
    [44] 刘洪波, 孙力平, 夏四清. 生物膜中反硝化除磷作用的研究[J]. 工业用水与废水, 2006, 37(1): 40-43.
    [45] 王亚宜, 王淑莹, 彭永臻. MLSS、pH及NO-2-N对反硝化除磷的影响[J]. 中国给水排水, 2005, 21(7): 47-51.
    [46] SEVIOUR R J, MINO T, ONUKI M. The microbiology of biological phosphorus removal in activated sludge systems[J]. FEMS Microbiology Reviews, 2003, 27(1): 99-127.
  • 加载中
计量
  • 文章访问数:  4396
  • HTML全文浏览数:  4210
  • PDF下载数:  308
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-10-11

3种固定式填料在中试IFAS系统中的性能比较及菌群结构解析

  • 1. 中国人民大学低碳水环境技术研究中心,北京 100872
基金项目:

中国人民大学2018年度“中央高校建设世界一流大学学科中国人民大学2018年度“中央高校建设世界一流大学(学科)和特色发展引导专项资金”支持

摘要: 为考察固定式填料在生物膜-活性污泥工艺(IFAS)中的性能和菌群结构,选取弹性立体填料、组合填料以及自制填料3种固定式填料投入中试级别的IFAS反应器好氧池中进行对比,另于小试系统中进行3种填料的脱膜实验。结果表明:组合填料的亲水性最高(接触角为38°),生物膜厚且致密,加上结点的存在,易结团,脱膜率最高为63%;弹性填料21 d基本可以完成生物膜的更新;而自制填料脱膜速率先快后慢,第24 天时脱膜率高达80%。在系统运行期间,3种填料对COD、氨氮去除率均在90%以上,出水均达到一级A排放标准。自制填料和组合填料系统的总氮去除率高于弹性填料。当自制填料系统运行27 d以后,TN出水可稳定达到一级A排放标准。与组合填料和弹性填料相比,由于自制填料结构的特殊性,其负载的生物量最多,生物多样性最高,同时,对硝化细菌、反硝化菌和反硝化除磷菌均表现出富集优势。

English Abstract

参考文献 (46)

目录

/

返回文章
返回