紫外光降解硝酸盐体系中四环素

王雅洁. 紫外光降解硝酸盐体系中四环素[J]. 环境工程学报, 2019, 13(6): 1329-1337. doi: 10.12030/j.cjee.201810036
引用本文: 王雅洁. 紫外光降解硝酸盐体系中四环素[J]. 环境工程学报, 2019, 13(6): 1329-1337. doi: 10.12030/j.cjee.201810036
WANG Yajie. Tetracycline degradation under UVA irradiation in nitrate system[J]. Chinese Journal of Environmental Engineering, 2019, 13(6): 1329-1337. doi: 10.12030/j.cjee.201810036
Citation: WANG Yajie. Tetracycline degradation under UVA irradiation in nitrate system[J]. Chinese Journal of Environmental Engineering, 2019, 13(6): 1329-1337. doi: 10.12030/j.cjee.201810036

紫外光降解硝酸盐体系中四环素

  • 基金项目:

    国家自然科学基金资助项目21667011

    贵州省科技厅与贵州民族大学联合基金项目黔科合LH字[2015]7225国家自然科学基金资助项目(21667011)

    贵州省科技厅与贵州民族大学联合基金项目(黔科合LH字[2015]7225)

Tetracycline degradation under UVA irradiation in nitrate system

  • Fund Project:
  • 摘要: 为了考察紫外光照射下四环素(tetracycline,TC)在硝酸盐(NO3-)体系中的降解过程,研究了初始pH、TC初始浓度、NO3-浓度、腐殖酸以及磷酸盐等环境因子对TC光降解的影响,利用ESR检测和自由基猝灭实验,量化分析体系中不同氧化途径对TC去除的贡献率。结果表明:TC在NO3-体系中的光降解受pH影响显著;腐殖酸和磷酸盐对TC的降解表现出不同程度的抑制作用;TC通过直接光解、HO·、1O2和O2?-氧化4种途径降解,当TC浓度为10.0 mg·L-1,NO3-浓度为1.0 mmol·L-1,pH 为7.0时光照150 min后,不同途径的贡献率分别为60.4%、25.6%、8.9%和5.1%。结果有助于了解TC的环境化学行为,为TC治理提供参考。
  • 加载中
  • [1] KHETAN S K, COLLINS T J. Human pharmaceuticals in the aquatic environment: A challenge to green chemistry[J]. Chemical Reviews, 2007, 107(6): 2319-2364.
    [2] CHRISTIAN T, SCHNEIDER R, FARBER H A, et al. Determination of antibiotic residues in manure, soil, and surface waters[J]. Acta Hydrochimica et Hydrobiologica, 2003, 31(1): 36-44.
    [3] MACK J, BOLTON J R. Photochemistry of nitrite and nitrate in aqueous solution: A review[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 128(1/2/3): 1-13.
    [4] NIU J F, LI Y, WANG W L. Light-source-dependent role of nitrate and humic acid in tetracycline photolysis: Kinetics and mechanism[J]. Chemosphere, 2013, 92(11): 1423-1429.
    [5] CHEN Y, HU C, QU J H, et al. Photodegradation of tetracycline and formation of reactive oxygen species in aqueous tetracycline solution under simulated sunlight irradiation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 197(1): 81-87.
    [6] AUGER J P, RICHARD C. Reactive species produced on irradiation at 365 nm of aqueous solutions of humic acids[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1996, 93(2/3): 193-198.
    [7] SANTOS H F DOS, XAVIER E S, ZERNER M C, et al. Spectroscopic investigation of the Al(III)-anhydrotetracycline complexation process[J]. Journal of Molecular Structure:THEOCHEM, 2000, 527(1/2/3): 193-202.
    [8] JIAO S J, ZHENG S R, YIN D Q, et al. Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria[J]. Chemosphere, 2008, 73(3): 377-382.
    [9] CHEN Y, ZHANG K, ZUO Y G. Direct and indirect photodegradation of estriol in the presence of humic acid, nitrate and iron complexes in water solutions[J]. Science of the Total Environment, 2013, 463-464: 802-809.
    [10] GOTHWAL R, SHASHIDHAR T. Antibiotic pollution in the environment: A review[J]. Clean-Soil Air Water, 2015, 43(4):463-489.
    [11] 白泽琳,何伟,李一龙,等.光诱导腐殖酸产生单线态氧的影响因素研究[J]. 环境科学学报, 2016, 36(4): 1169-1175.
    [12] LI S, HU J. Photolytic and photocatalytic degradation of tetracycline: Effect of humic acid on degradation kinetics and mechanisms[J]. Journal of Hazardous Materials, 2016, 318: 134-144.
    [13] 龚荔. 水中NO2-/NO3-光化学作用及其驱动有机磷转化的研究[D]. 武汉: 华中农业大学, 2015.
    [14] VIONE D, MAURINO V, MINERO C, et al. New processes in the environmental chemistry of nitrite: Nitration of phenol upon nitrite photoinduced oxidation[J]. Environmental Science & Technology, 2002, 36(4): 669-676.
    [15] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O?) in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1998, 17(2): 513-886.
    [16] FRIDOVICH I. Superoxide anion radical (O2?-), superoxide dismutases, and related matters[J]. Journal of Biological Chemistry, 1997, 272(30): 18515-18517.
    [17] MAURETTE M T, OLIVEROS E, INFELTA P P, et al. Singlet oxygen and superoxide: Experimental differentiation and analysis[J]. Helvetica, 1983, 66(2): 722-732.
    [18] APPIANI E, OSSOLA R, LATCH D E, et al. Aqueous singlet oxygen reaction kinetics of furfuryl alcohol: Effect of temperature, pH and salt content[J]. Environmental Science: Process & Impacts, 2017, 19(4): 507-516.
    [19] SAVEL′EVA O S, SHEVCHUK L G, VYSOTSKAYA N A. Reactivity of substituted benzenes, furans, and pyridines to hydroxyl radicals[J]. Journal of Organic Chemistry of the USSR, 1972, 8: 283-286.
  • 加载中
计量
  • 文章访问数:  2679
  • HTML全文浏览数:  2603
  • PDF下载数:  102
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-06-18

紫外光降解硝酸盐体系中四环素

  • 1. 贵州民族大学生态环境工程学院,贵阳 550025
基金项目:

国家自然科学基金资助项目21667011

贵州省科技厅与贵州民族大学联合基金项目黔科合LH字[2015]7225国家自然科学基金资助项目(21667011)

贵州省科技厅与贵州民族大学联合基金项目(黔科合LH字[2015]7225)

摘要: 为了考察紫外光照射下四环素(tetracycline,TC)在硝酸盐(NO3-)体系中的降解过程,研究了初始pH、TC初始浓度、NO3-浓度、腐殖酸以及磷酸盐等环境因子对TC光降解的影响,利用ESR检测和自由基猝灭实验,量化分析体系中不同氧化途径对TC去除的贡献率。结果表明:TC在NO3-体系中的光降解受pH影响显著;腐殖酸和磷酸盐对TC的降解表现出不同程度的抑制作用;TC通过直接光解、HO·、1O2和O2?-氧化4种途径降解,当TC浓度为10.0 mg·L-1,NO3-浓度为1.0 mmol·L-1,pH 为7.0时光照150 min后,不同途径的贡献率分别为60.4%、25.6%、8.9%和5.1%。结果有助于了解TC的环境化学行为,为TC治理提供参考。

English Abstract

参考文献 (19)

目录

/

返回文章
返回