膜浓缩液淋滤飞灰后灰渣重金属热处理特性分析

孟棒棒, 田书磊, 刘宏博, 艾恒雨, 王野, 李松, 黄启飞. 膜浓缩液淋滤飞灰后灰渣重金属热处理特性分析[J]. 环境工程学报, 2019, 13(4): 992-999. doi: 10.12030/j.cjee.201810058
引用本文: 孟棒棒, 田书磊, 刘宏博, 艾恒雨, 王野, 李松, 黄启飞. 膜浓缩液淋滤飞灰后灰渣重金属热处理特性分析[J]. 环境工程学报, 2019, 13(4): 992-999. doi: 10.12030/j.cjee.201810058
MENG Bangbang, TIAN Shulei, LIU Hongbo, AI Hengyu, WANG Ye, LI Song, HUANG Qifei. Analysis on heat treatment of heavy metal in residues from fly ash leaching process by membrane concentrated leachate[J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 992-999. doi: 10.12030/j.cjee.201810058
Citation: MENG Bangbang, TIAN Shulei, LIU Hongbo, AI Hengyu, WANG Ye, LI Song, HUANG Qifei. Analysis on heat treatment of heavy metal in residues from fly ash leaching process by membrane concentrated leachate[J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 992-999. doi: 10.12030/j.cjee.201810058

膜浓缩液淋滤飞灰后灰渣重金属热处理特性分析

  • 基金项目:

    国家环境保护公益性行业科研专项201509055

    国家自然科学基金资助项目51178440国家环境保护公益性行业科研专项(201509055)

    国家自然科学基金资助项目(51178440)

Analysis on heat treatment of heavy metal in residues from fly ash leaching process by membrane concentrated leachate

  • Fund Project:
  • 摘要: 垃圾焚烧飞灰与垃圾渗滤液膜浓缩液协同处理能够解决2种废物处置难的问题,但二者协同处理产生的灰渣往往仍需进一步无害化处理。在分析灰渣的物理化学性质基础上,研究灰渣中重金属在热处理过程中的迁移转化特性,进而探讨灰渣热处理无害化的可行性。实验考察了不同热处理温度(300、600、800、1 000和1 200 ℃)对灰渣中重金属(Pb、Zn、Cu和Cd)的挥发率的影响,并分析热处理后灰渣的矿物相转化及重金属浸出毒性变化。结果表明:随着热处理温度的升高,重金属Pb、Cd的挥发率显著增大,Zn、Cu挥发率的增幅相对较小。热处理过程中,Pb、Zn、Cu、Cd在1 200 ℃时挥发率最大,分别为94.6%、68.9%、69.4%和97.7%。浸出实验结果表明,当热处理温度高于800 ℃时,热处理后灰渣中重金属Pb、Zn、Cu、Cr、Cd的浸出浓度均达到GB 16889-2008相关限值要求。研究结果显示,对飞灰协同处理后的灰渣进行热处理实现其无害化具有一定的可行性。
  • 加载中
  • [1] FEDJE K K, EKBERG C, SKARNEMARK G, et al. Removal of hazardous metals from MSW fly ash an evaluation of ash leaching methods[J]. Journal of Hazardous Materials, 2010, 173(1/2/3): 310-317.
    [2] WANG Q, TIAN S, WANG Q, et al. Melting characteristics during the vitrification of MSWI fly ash with a pilot-scale diesel oil furnace[J]. Journal of Hazardous Materials, 2008, 160(2/3): 376-381.
    [3] JIAO F, ZHANG L, DONG Z, et al. Study on the species of heavy metals in MSW incineration fly ash and their leaching behavior[J]. Fuel Processing Technology, 2016, 152: 108-115.
    [4] YAKUBU Y, ZHOU J, PING D, et al. Effects of pH dynamics on solidification/stabilization of municipal solid waste incineration fly ash[J]. Journal of Environmental Management, 2017, 207: 243-248.
    [5] 李静, 周斌, 易新建, 等. 垃圾焚烧飞灰重金属稳定化药剂处理效果[J]. 环境工程学报, 2016, 10(6): 3242-3248.
    [6] 肖海平, 茹宇, 李丽, 等. 水泥窑协同处置生活垃圾焚烧飞灰过程中二噁英的迁移和降解特性[J]. 环境科学研究, 2017, 30(2): 291-297.
    [7] LIU G, ZHAN J, ZHENG M, et al. Field pilot study on emissions, formations and distributions of PCDD/Fs from cement kiln co-processing fly ash from municipal solid waste incinerations[J]. Journal of Hazardous Materials, 2015, 299(1): 471-478.
    [8] TIAN S, WANG Q, WANG Q, et al. Characteristics of heavy metals during melting and solidification of MSWI fly ash[J]. Journal of Harbin Institute of Technology, 2008, 40(10): 1576-1580.
    [9] YANG J, XIAO B, BOCCACCINI A. Preparation of low melting temperature glass-ceramics from municipal waste incineration fly ash[J]. Fuel, 2009, 88(7): 1275-1280.
    [10] HU Y, ZHANG P, CHEN D, et al. Hydrothermal treatment of municipal solid waste incineration fly ash for dioxin decomposition[J]. Journal of Hazardous Materials, 2012, 207/208: 79-85.
    [11] 石德智, 李鹏飞, 张超等. 水热法外加硅铝添加剂稳定垃圾焚烧飞灰中的重金属[J]. 环境工程学报, 2017, 11(1):582-588.
    [12] ZHANG F, ITOH H. Extraction of metals from municipal solid waste incinerator fly ash by hydrothermal process[J]. Journal of Hazardous Materials, 2006, 136(3): 663-670.
    [13] 张国卿. 城市污泥与垃圾焚烧飞灰协同共处置及资源化利用探究[D]. 上海: 上海大学, 2014.
    [14] 徐学骁, 徐炎华, 俞敏洁, 等. 化工污泥与粉煤灰制备水处理填料的研究[J]. 环境科学与技术, 2016, 39(3): 95-99.
    [15] MOHAN S, GANDHIMATHI R. Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent[J]. Journal of Hazardous Materials, 2009, 169(1/2/3): 351-359.
    [16] ZHANG S, LIU N, ZHOU Q, et al. Treatment of concentrated leachate by coagulation and fly ash absorption[C]//Institute of Electrical and Electronics Engineers. 2011 International Computer Distributed Control & Intelligent Environmental Monitoring, Changsha, Hunan China, 2011: 2366-2369.
    [17] LUNA Y, OTAL E, VILCHES L F, et al. Use of zeolitised coal fly ash for landfill leachate treatment: A pilot plant study[J]. Waste Management, 2007, 27(12): 1877-1883.
    [18] 叶秀雅. 生活垃圾焚烧飞灰的特性及其与垃圾渗滤液的联合处理[D]. 广州: 华南理工大学, 2012.
    [19] 孟棒棒, 田书磊, 李松, 等. 焚烧飞灰协同去除垃圾渗滤液纳滤膜浓缩液中COD的特性研究[J]. 环境科学研究, 2018, 31(12): 2133-2139.
    [20] 田书磊. 垃圾焚烧飞灰重金属热分离工艺及挥发特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2007.
    [21] 环境保护部. 固体废物 金属元素的测定 电感耦合等离子体质谱法: HJ 766-2015[S]. 北京: 中国环境科学出版社, 2015.
    [22] 国家环境保护总局. 固体废物 浸出毒性浸出方法 醋酸缓冲溶液法: HJ/T 300-2007[S]. 北京: 中国环境科学出版社, 2007.
    [23] 环境保护部. 生活垃圾填埋场污染控制标准:GB 16889-2008[S]. 北京:中国环境科学出版社, 2008.
    [24] 李润东, 聂永丰, 王雷, 等. 成分对垃圾飞灰熔融过程重金属迁移的影响[J]. 清华大学学报(自然科学版), 2004, 44(9): 1180-1183.
    [25] 蔡旭. 生活垃圾热处置过程中重金属形态及迁移转化特性[D]. 杭州: 浙江大学, 2015.
  • 加载中
计量
  • 文章访问数:  1701
  • HTML全文浏览数:  1573
  • PDF下载数:  137
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-04-15

膜浓缩液淋滤飞灰后灰渣重金属热处理特性分析

  • 1. 中国环境科学研究院,环境基准与风险评估国家重点实验室,北京 100012
  • 2. 哈尔滨理工大学化学与环境工程学院,哈尔滨 150040
  • 3. 东北大学资源与土木工程学院,沈阳 110819
  • 4. 东北电力大学化学工程学院,吉林 132012
基金项目:

国家环境保护公益性行业科研专项201509055

国家自然科学基金资助项目51178440国家环境保护公益性行业科研专项(201509055)

国家自然科学基金资助项目(51178440)

摘要: 垃圾焚烧飞灰与垃圾渗滤液膜浓缩液协同处理能够解决2种废物处置难的问题,但二者协同处理产生的灰渣往往仍需进一步无害化处理。在分析灰渣的物理化学性质基础上,研究灰渣中重金属在热处理过程中的迁移转化特性,进而探讨灰渣热处理无害化的可行性。实验考察了不同热处理温度(300、600、800、1 000和1 200 ℃)对灰渣中重金属(Pb、Zn、Cu和Cd)的挥发率的影响,并分析热处理后灰渣的矿物相转化及重金属浸出毒性变化。结果表明:随着热处理温度的升高,重金属Pb、Cd的挥发率显著增大,Zn、Cu挥发率的增幅相对较小。热处理过程中,Pb、Zn、Cu、Cd在1 200 ℃时挥发率最大,分别为94.6%、68.9%、69.4%和97.7%。浸出实验结果表明,当热处理温度高于800 ℃时,热处理后灰渣中重金属Pb、Zn、Cu、Cr、Cd的浸出浓度均达到GB 16889-2008相关限值要求。研究结果显示,对飞灰协同处理后的灰渣进行热处理实现其无害化具有一定的可行性。

English Abstract

参考文献 (25)

目录

/

返回文章
返回