改性硅酸钙对Cd2+的吸附性能及其对Cd污染土壤的修复潜力

单伟, 郁红艳, 邹路易, 滕跃, 严群. 改性硅酸钙对Cd2+的吸附性能及其对Cd污染土壤的修复潜力[J]. 环境工程学报, 2019, 13(4): 918-926. doi: 10.12030/j.cjee.201810085
引用本文: 单伟, 郁红艳, 邹路易, 滕跃, 严群. 改性硅酸钙对Cd2+的吸附性能及其对Cd污染土壤的修复潜力[J]. 环境工程学报, 2019, 13(4): 918-926. doi: 10.12030/j.cjee.201810085
SHAN Wei, YU Hongyan, ZOU Luyi, TENG Yue, YAN Qun. Cd2+ adsorption performance of modified calcium silicate and its potential on Cd contaminated soil remediation[J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 918-926. doi: 10.12030/j.cjee.201810085
Citation: SHAN Wei, YU Hongyan, ZOU Luyi, TENG Yue, YAN Qun. Cd2+ adsorption performance of modified calcium silicate and its potential on Cd contaminated soil remediation[J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 918-926. doi: 10.12030/j.cjee.201810085

改性硅酸钙对Cd2+的吸附性能及其对Cd污染土壤的修复潜力

  • 基金项目:

    江南大学自主科研计划青年基金资助项目JUSRP11525

    国家自然科学基金资助项目21307043

    中国博士后基金资助项目2016M59041江南大学自主科研计划青年基金资助项目(JUSRP11525)

    国家自然科学基金资助项目(21307043)

    中国博士后基金资助项目(2016M59041)

Cd2+ adsorption performance of modified calcium silicate and its potential on Cd contaminated soil remediation

  • Fund Project:
  • 摘要: 通过吸附-解吸实验和土柱淋溶实验,研究了改性硅酸钙对镉(Cd2+)的吸附性能及对Cd污染土壤的钝化效果。结果表明,改性硅酸钙对Cd2+有较强的吸附能力,其吸附平衡时间在60 min左右,对溶液pH有较宽的适应范围,且当pH呈中性时,对Cd2+的吸附效果最好。由Langmuir模型拟合结果可知,改性硅酸钙对Cd2+的饱和吸附容量可达441.55 mg·g-1。改性硅酸钙对Cd2+有较好的吸附稳定性,适合用于Cd污染土壤的修复。土柱淋溶实验表明,改性硅酸钙对Cd污染土壤的钝化效果明显,不仅降低淋溶液Cd2+含量,使淋溶液Cd2+累积量显著降低47.01%,还使土壤CaCl2-Cd浓度显著降低94.4%,并促使土壤易溶态Cd向难溶态Cd转变。
  • 加载中
  • [1] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[J]. 环境教育, 2014(6): 8-10.
    [2] XU C, CHEN H X, XIANG Q, et al. Effect of peanut shell and wheat straw biochar on the availability of Cd and Pb in a soil-rice (Oryza sativa L.) system[J]. Environmental Science and Pollution Research, 2017, 25(2): 1147-1156.
    [3] HUANG Q Q, YU Y, WAN Y N, et al. Effects of continuous fertilization on bioavailability and fractionation of cadmium in soil and its uptake by rice (Oryza sativa L.)[J]. Journal of Environmental Management, 2018, 215: 13-21.
    [4] KHALID S, SHAHID M, NIAZI N K, et al. A comparison of technologies for remediation of heavy metal contaminated soils[J]. Journal of Geochemical Exploration, 2017, 182: 247-268.
    [5] KHAN M A, KHAN S, KHAN A, et al. Soil contamination with cadmium, consequences and remediation using organic amendments[J]. Science of the Total Environment, 2017, 601-602: 1591-1605.
    [6] BOLAN N, KUNHIKRISHNAN A, THANGARAJAN R, et al. Remediation of heavy metal(loid)s contaminated soils: To mobilize or to immobilize[J]. Journal of Hazardous Materials, 2014, 266(4): 141-166.
    [7] WU Y J, ZHOU H, ZOU Z J, et al. A three-year in-situ study on the persistence of a combined amendment (limestone+sepiolite) for remedying paddy soil polluted with heavy metals[J]. Ecotoxicology and Environmental Safety, 2016, 130: 163-170.
    [8] 辜娇峰, 周航, 杨文弢, 等. 复合改良剂对镉砷化学形态及在水稻中累积转运的调控[J]. 土壤学报, 2016, 53(6): 1576-1585.
    [9] GU J F, ZHOU H, YANG W T, et al. Effects of an additive (hydroxyapatite-biochar-zeolite) on the chemical speciation of Cd and As in paddy soils and their accumulation and translocation in rice plants[J]. Environmental Science and Pollution Research, 2018, 25(4): 1-12.
    [10] HUANG M, ZHU Y, LI Z W, et al. Compost as a soil amendment to remediate heavy metal-contaminated agricultural soil: Mechanisms, efficacy, problems, and strategies[J]. Water, Air & Soil Pollution, 2016, 227(10): 359-376.
    [11] ZHANG X K, WANG H L, HE L Z, et al. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants[J]. Environmental Science and Pollution Research, 2013, 20(12): 8472-8483.
    [12] LI L Y, HU J W, SHI X D, et al. Nanoscale zero-valent metals: A review of synthesis, characterization, and applications to environmental remediation[J]. Environmental Science and Pollution Research, 2016, 23(18): 17880-17900.
    [13] 王林, 徐应明, 梁学峰, 等. 新型杂化材料钝化修复镉铅复合污染土壤的效应与机制研究[J]. 环境科学, 2011, 32(2): 581-588.
    [14] 黄辉, 宁西翠, 郭瞻宇, 等. 多孔SBA-15颗粒对Cd(Ⅱ)的吸附缝合及其对土壤Cd(Ⅱ)的修复潜力[J]. 环境科学, 2017, 38(1): 374-381.
    [15] LI P, WANG X X, ZHANG T L, et al. Effects of several amendments on rice growth and uptake of copper and cadmium from a contaninated soil[J]. Journal of Environmental Sciences, 2008, 20(4): 449-455.
    [16] LU H P, ZHUANG P, LI Z A, et al. Contrasting effects of silicates on cadmium uptake by three dicotyledonous crops grown in contaminated soil[J]. Environmental Science and Pollution Research, 2014, 21(16): 9921-9930.
    [17] 武成辉, 李亮, 雷畅, 等. 硅酸盐钝化剂在土壤重金属污染修复中的研究与应用[J]. 土壤, 2017, 49(3): 446-452.
    [18] 刘立华, 杨刚刚, 王易峰, 等. 模板法合成介孔硅酸钙及其对重金属离子的吸附性能[J]. 环境化学, 2016, 35(9): 1943-1951.
    [19] 赵越, 郑欣, 徐畅, 等. 改性硅酸钙(CSH)对重金属废水中Ni2+的吸附特性研究[J]. 安全与环境学报, 2017, 17(5): 1904-1908.
    [20] 王文波, 田光燕, 王丹丹, 等. 低品位凹凸棒石黏土水热合成介孔硅酸盐吸附剂[J]. 硅酸盐通报, 2017, 36(7): 2379-2386.
    [21] 梁美娜, 张涛, 王敦球, 等. 生物质吸附剂去除废水中镉的研究进展[J]. 桂林理工大学学报, 2017, 37(4): 676-681.
    [22] 中华人民共和国国家市场监督管理总局,生态环境部. 土壤环境质量 农用地土壤污染风险管控标准(试行): GB 15618-2018[S]. 北京: 中国环境科学出版社, 2018.
    [23] 张丽娜, 宗良纲, 任偲, 等. 硅对低镉污染水平下水稻幼苗生长及吸收镉的影响[J]. 农业环境科学学报, 2007, 26(2): 494-499.
    [24] TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851.
    [25] 杨金梅, 吕建波, 李莞璐, 等. 壳聚糖载纳米羟基氧化铁对水中磷的吸附[J]. 环境工程学报, 2018, 12(5): 1286-1294.
    [26] 马天行, 杨琛, 江鲜英, 等. 纳米零价铁改性氨基生物炭的制备及对Cd(Ⅱ)的吸附和解吸特性[J]. 环境工程学报, 2016, 10(10): 5433-5439.
    [27] ZHAO Y, CHEN H, YAN Q. Enhanced phosphate removal during the simultaneous adsorption of phosphate and Ni2+ from electroless nickel wastewater by calcium silicate hydrate (CSH)[J]. Environmental Technology & Innovation, 2017, 8: 141-149.
    [28] 仇欢, 王凤贺, 李卉, 等. 不同膨润土对含镉废水的吸附性能[J]. 环境工程学报, 2016, 10(11): 6513-6518.
    [29] 李璐玮, 祝方, 任腾飞, 等. 表面印迹材料对水中Cd(Ⅱ)的吸附动力学[J]. 环境化学, 2016, 35(4): 793-799.
    [30] 邓潇, 周航, 陈珊, 等. 改性玉米秸秆炭和花生壳炭对溶液中Cd2+的吸附[J]. 环境工程学报, 2016, 10(11): 6325-6331.
    [31] 苏鹃, 伍钧, 杨刚, 等. 改性白果壳对水溶液中重金属镉的吸附研究[J]. 农业环境科学学报, 2014, 33(6): 1218-1225.
    [32] ZHOU Q W, LIAO B H, LIN L N, et al. Adsorption of Cu(II) and Cd(II) from aqueous solutions by ferromanganese binary oxide-biochar composites[J]. Science of the Total Environment, 2018, 615: 115-122.
    [33] 李如艳, 崔红标, 刘笑生, 等. 模拟酸雨对磷酸二氢钾钝化污染土壤Cu、Cd、Pb和P释放的影响[J]. 环境工程学报, 2018, 12(1): 227-234.
    [34] CUI H B, ZHANG S W, LI R Y, et al. Leaching of Cu, Cd, Pb, and phosphorus and their availability in the phosphate-amended contaminated soils under simulated acid rain[J]. Environmental Science and Pollution Research, 2017, 24(26): 21128-21137.
    [35] 陶权, 姚景, 何树福, 等. 模拟酸雨条件下改性沸石对污染土Pb、Zn的淋溶效应[J]. 水土保持学报, 2015, 29(5): 304-308.
    [36] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 地下水质量标准: GB/T 14848-2017[S]. 北京: 中国环境科学出版社, 2017.
    [37] ZHAO C C, REN S X, ZUO Q Q, et al. Effect of nanohydroxyapatite on cadmium leaching and environmental risks under simulated acid rain[J]. Science of the Total Environment, 2018, 627: 553-560.
    [38] 郑顺安, 陈春, 郑向群, 等. 模拟降雨条件下22种典型土壤镉的淋溶特征及影响因子分析[J]. 环境化学, 2013, 32(5): 867-873.
  • 加载中
计量
  • 文章访问数:  1369
  • HTML全文浏览数:  1196
  • PDF下载数:  205
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-04-15

改性硅酸钙对Cd2+的吸附性能及其对Cd污染土壤的修复潜力

  • 1. 江南大学环境与土木工程学院,无锡 214122
基金项目:

江南大学自主科研计划青年基金资助项目JUSRP11525

国家自然科学基金资助项目21307043

中国博士后基金资助项目2016M59041江南大学自主科研计划青年基金资助项目(JUSRP11525)

国家自然科学基金资助项目(21307043)

中国博士后基金资助项目(2016M59041)

摘要: 通过吸附-解吸实验和土柱淋溶实验,研究了改性硅酸钙对镉(Cd2+)的吸附性能及对Cd污染土壤的钝化效果。结果表明,改性硅酸钙对Cd2+有较强的吸附能力,其吸附平衡时间在60 min左右,对溶液pH有较宽的适应范围,且当pH呈中性时,对Cd2+的吸附效果最好。由Langmuir模型拟合结果可知,改性硅酸钙对Cd2+的饱和吸附容量可达441.55 mg·g-1。改性硅酸钙对Cd2+有较好的吸附稳定性,适合用于Cd污染土壤的修复。土柱淋溶实验表明,改性硅酸钙对Cd污染土壤的钝化效果明显,不仅降低淋溶液Cd2+含量,使淋溶液Cd2+累积量显著降低47.01%,还使土壤CaCl2-Cd浓度显著降低94.4%,并促使土壤易溶态Cd向难溶态Cd转变。

English Abstract

参考文献 (38)

目录

/

返回文章
返回