微丝菌诱发污泥膨胀生长特性控制策略研究进展

杨敏, 杨思敏, 范念斯, 齐嵘. 微丝菌诱发污泥膨胀生长特性控制策略研究进展[J]. 环境工程学报, 2019, 13(2): 253-263. doi: 10.12030/j.cjee.201811091
引用本文: 杨敏, 杨思敏, 范念斯, 齐嵘. 微丝菌诱发污泥膨胀生长特性控制策略研究进展[J]. 环境工程学报, 2019, 13(2): 253-263. doi: 10.12030/j.cjee.201811091
YANG Min, YANG Simin, FAN Niansi, QI Rong. Progress in sludge bulking caused by Microthrix parvicella and its control strategy[J]. Chinese Journal of Environmental Engineering, 2019, 13(2): 253-263. doi: 10.12030/j.cjee.201811091
Citation: YANG Min, YANG Simin, FAN Niansi, QI Rong. Progress in sludge bulking caused by Microthrix parvicella and its control strategy[J]. Chinese Journal of Environmental Engineering, 2019, 13(2): 253-263. doi: 10.12030/j.cjee.201811091

微丝菌诱发污泥膨胀生长特性控制策略研究进展

  • 基金项目:

    国家水体污染控制与治理重大专项2015ZX07203-005-03国家水体污染控制与治理重大专项(2015ZX07203-005-03)

Progress in sludge bulking caused by Microthrix parvicella and its control strategy

  • Fund Project:
  • 摘要: 丝状菌过量生长诱发的污泥膨胀现象是城市污水生物处理系统稳定运行面临的巨大挑战,它会造成二沉池固液分离困难、出水水质恶化,严重时导致整体生物处理系统的崩溃。其中,微丝菌(Microthrix parvicella)诱发的污泥膨胀现象因其发生普遍,后果严重,在污水日常工艺运行中对其的预防与控制显得尤为重要。目前,由于微丝菌分离困难,已获得的纯培养物在实验室条件下生长极为缓慢,限制了人们对其生理生化特性的深入认识,为建立有针对性的通用控制策略带来了相当难度。从实际污水处理厂的污泥膨胀现象调查与解析、混合培养体系富集模拟实验的结果表明,微丝菌在低水温(12~15 ℃)、低污泥负荷(-1(以MLSS计))及含长链脂肪酸的环境中具有竞争生长优势,相关组学研究也证实了其对长链脂肪酸具有良好的吸收能力。丝状菌污泥膨胀的控制手段主要包括非特异性技术(如杀菌剂投加)和针对目标丝状菌的特异性技术(如絮凝剂投加、工艺运行参数调节等);而微丝菌膨胀的传统控制策略存在见效慢、成本高、通用性差等特点。迄今为止,我国针对微丝菌诱发污泥膨胀的有效特异性调控策略依然较少。因此,系统总结目前国内外对微丝菌理化特征与生长特性,详细介绍实际工艺运行过程中对其膨胀现象的控制方法,并提出可能的控制策略对未来的研究方向具有重要的现实意义。
  • 加载中
  • [1] WANG J, LI Q, QI R, et al. Sludge bulking impact on relevant bacterial populations in a full-scale municipal wastewater treatment plant[J]. Process Biochemistry, 2014, 49(12): 2258-2265.
    [2] WANNER J, KRAGELUND C, NIELSEN P H. Microbiology of Bulking. In: Microbial Ecology of Activated Sludge[M]. London: IWA Publishing, 2010.
    [3] NIELSEN P H, KRAGELUND C, SEVIOUR R J, et al. Identity and ecophysiology of filamentous bacteria in activated sludge[J]. FEMS Microbiology Reviews, 2010, 33(6): 969-998.
    [4] KRHUTKOVA O, RUZICKOV? I, WANNER J. Microbial evaluation of activated sludge and filamentous population at eight Czech nutrient removal activated sludge plants during year 2000[J]. Water Science & Technology, 2002, 46(1/2): 471-478.
    [5] SEVIOUR E M, WILLIAMS C, DEGREY B, et al. Studies on filamentous bacteria from Australian activated sludge plants[J]. Water Research, 1994, 28(11): 2335-2242.
    [6] WANG J, QI R, LIU M, et al. The potential role of Candidatus Microthrix parvicella in phosphorus removal during sludge bulking in two full-scale enhanced biological phosphorus removal plants[J]. Water Science & Technology, 2014, 70(2): 367-375.
    [7] MIELCZAREK A T, KRAGELUND C, ERIKSEN P S, et al. Population dynamics of filamentous bacteria in Danish wastewater treatment plants with nutrient removal[J]. Water Research, 2012, 46(12): 3781-3795.
    [8] WANG P, YU Z, QI R, et al. Detailed comparison of bacterial communities during seasonal sludge bulking in a municipal wastewater treatment plant[J]. Water Research, 2016, 105: 157-166.
    [9] ROSSETTI S, CHRISTENSSON C, BLACKALL L L, et al. Phenotypic and phylogenetic description of an Italian isolate of Microthrix parvicella[J]. Journal of Applied Microbiology, 1997, 82(4): 405-410.
    [10] LYKO S, TEICHGR?BER B, KRAFT A. Bulking control by low-dose ozonation of returned activated sludge in a full-scale wastewater treatment plant[J]. Water Science & Technology, 2012, 65(9): 1654-1659.
    [11] PARIS S, LIND G, LEMMER H, et al. Dosing aluminum chloride to control Microthrix parvicella[J]. Clean - Soil, Air, Water, 2005, 33(3): 247-254.
    [12] DURBAN N, JUZAN L, KRIER J, et al. Control of Microthrix parvicella by aluminium salts addition[J]. Water Science & Technology, 2016, 73(2): 414-422.
    [13] NIELSEN P H, KRAGELUND C, NIELSEN J L, et al. Control of Microthrix parvicella in activated sludge plants by dosage of polyaluminium salts: Possible mechanisms[J]. Clean-Soil Air Water, 2005, 33(3): 255-261.
    [14] ANDREASEN K, SIGVARDSEN L. Experiences with sludge settle ability in different process alternatives for nutrient removal[J]. Water Science & Technology, 1996, 33(12): 137-146.
    [15] MINO T. Survey on filamentous micro-organisms in activated sludge processes in Bangkok, Thailand[J]. Water Science & Technology, 1995, 31(9): 193-202.
    [16] MARTINS A M, PAGILLA K, HEIJNEN J J, et al. Filamentous bulking sludge: A critical review[J]. Water Research, 2004, 38(4): 793-817.
    [17] EIKELBOOM D H, ANDREADAKIS A, ANDREASEN K. Survey of filamentous populations in nutrient removal plants in four European countries[J]. Water Science & Technology, 1998, 37(4/5): 281-289.
    [18] MILOBEDZKA A, MUSZYNKI A. Population dynamics of filamentous bacteria identified in Polish full-scale wastewater treatment plants with nutrients removal[J]. Water Science & Technology, 2015, 71(5): 675-684.
    [19] ROSSETTI S, TOMEI M C, NIELSEN P H, et al. Microthrix parvicella, a filamentous bacterium causing bulking and foaming in activated sludge systems: A review of current knowledge[J]. FEMS Microbiology Reviews, 2005, 29(1): 49-64.
    [20] KRISTENSEN G H, JORGENSEN P E. Settling characteristics of activated sludge in Danish treatment plants with biological nutrient removal[J]. Water Science & Technology, 1994, 29(7): 157-165.
    [21] WANNER J, RUZICKOVA I, JETMAROVA P, et al. A national survey of activated sludge separation problems in the Czech Republic: Filaments, floc characteristics and activated sludge metabolic properties[J]. Water Science & Technology, 1998, 37(4/5): 271-279.
    [22] MADONI P, DAVOLI D, GIBIN G. Survey of filamentous microorganisms from bulking and foaming activated-sludge plants in Italy[J]. Water Research, 2000, 34(6): 1767-1772.
    [23] KUNST S. Practical investigations on bulking and foaming in activated sludge plants with biological phosphorus removal[J]. Water Science & Technology, 1994, 29(7): 289-294.
    [24] PUJOL R. Contact zone: French practice with low F/M bulking control[J]. Water Science & Technology, 1994, 29(7): 221-228.
    [25] GRAVELEAU L, COTTEUX E, DUCHèNE P. Bulking and foaming in France: The 1999-2001 survey[J]. Acta Hydrochimica et Hydrobiologica, 2005, 33(3): 223-231.
    [26] STROM P F, JENKINS D. Identification and significance of filamentous microorganisms in activated sludge[J]. Water Pollution Control Federation, 1984, 56(5): 449-459.
    [27] SWITZENBAUM M S, PLANTE T R, WOODWORTH B K. Filamentous bulking in Massachusetts: Extent of the problem and case-studies[J]. Water Science & Technology, 1992, 25: 265-271.
    [28] DI M W. First results from a screening of filamentous organisms present in Buenos Aires s activated sludge plants[J]. Water Science & Technology, 2002, 46(1/2): 119-122.
    [29] VAN VEEN W L. Bacteriology of activated sludge, in particular the filamentous bacteria[J]. Antonie Van Leeuwenhoek, 1973, 39(1): 189-205.
    [30] SLIJKHUIS H. Microthrix parvicella, a filamentous bacterium isolated from activated sludge: Cultivation in a chemically defined medium[J]. Applied & Environmental Microbiology, 1983, 46(4): 832-839.
    [31] BLACKALL L L, SEVIOUR E M, CUNNINGHAM M A, et al. Microthrix parvicella is a novel, deep branching member of the actinomycetes subphylum[J]. Systematic & Applied Microbiology, 1995, 17(4): 513-518.
    [32] JENKINS D, RICHARD M G, DAIGGER G T. Manual on the Causes and Control of Activated Sludge Bulking, Foaming, and Other Solids Separation Problems[M]. 3rd Edition. London: IWA Publishing, 2003.
    [33] LEVANTESI C, ROSSETTI S, THELEN K, et al. Phylogeny, physiology and distribution of Candidatus Microthrix calida, a new Microthrix species isolated from industrial activated sludge wastewater treatment plants[J]. Environmental Microbiology, 2006, 8(9): 1552-1563.
    [34] FEI X, LI S, CAO L, et al. A novel separation method of Microthrix parvicella filaments from activated sludge by a hydrophobic plate[J]. Current Microbiology, 2015, 71(4): 465-470.
    [35] TANDOI V, ROSSETTI S, BLACKALL L L, et al. Some physiological properties of an Italian isolate of Microthrix parvicellai[J]. Water Science & Technology, 1998, 37(4/5): 1-8.
    [36] SLIJKHUIS H, DEINEMA M H. The physiology of Microthrix parvicella a filamentous bacterium isolated from activated sludge[M]//CHAMBERS B, TOMLINSON E J.Bulking of Activated Sludge: Preventative and Remedial Methods. Chichester, England: Ellis Horwood limited, 1982: 75-83.
    [37] ROSSETTI S, TOMEI M C, LEVANTESI C, et al. Microthrix parvicella: A new approach for kinetic and physiological characterization[J]. Water Science & Technology, 2002, 46(1/2): 65-72.
    [38] ANDREASEN K, NIELSEN P H. Growth of Microthrix parvicella in nutrient removal activated sludge plants: Studies of in situ physiology[J]. Water Research, 2000, 34(5): 1559-1569.
    [39] MCILROY S J, KRISTIANSEN R, ALBERTSEN M, et al. Metabolic model for the filamentous Candidatus Microthrix parvicella based on genomic and metagenomic analyses[J]. ISME Journal, 2013, 7(6): 1161-1172.
    [40] FAN N, QI R, ROSSETTI S, et al. Factors affecting the growth of Microthrix parvicella: Batch tests using bulking sludge as seed sludge[J]. Science of the Total Environment, 2017, 609: 1192-1199.
    [41] NIELSEN P H, ROSLEV P, DUEHOLM T E, et al. Microthrix parvicella, a specialized lipid consumer in anaerobic-aerobic activated sludge plants[J]. Water Science & Technology, 2002, 46(1/2): 73-80.
    [42] MULLER E E, PINEL N, GILLECE J D, et al. Genome sequence of Candidatus Microthrix parvicella Bio17-1, a long-chain-fatty-acid-accumulating filamentous actinobacterium from a biological wastewater treatment plant[J]. Journal of Bacteriology, 2012, 194(23): 6670-6671.
    [43] DUNKEL T, ERIKA L D L G, SCH?NSEE C D, et al. Evaluating the influence of wastewater composition on the growth of Microthrix parvicella by GCxGC/qMS and real-time PCR[J]. Water Research, 2016, 88: 510-523.
    [44] 王慕华, 王琴, 齐嵘. 挥发性脂肪酸对丝状菌群落结构的影响[J]. 生物技术世界, 2016(5): 41-42.
    [45] BEJVL Z, MATUSKA P, STARA J, et al. Performances of three R-AN-D-N wastewater treatment plants in the Czech Republic[J]. Water Science & Technology, 2004, 50(7): 249-255.
    [46] MIANA P, GRANDO L, CARAVELLO G, et al. Microthrix parvicella foaming at the Fusina WWTP[J]. Water Science & Technology, 2002, 46(1/2): 499-502.
    [47] KNOOP S, KUNST S. Influence of temperature and sludge loading on activated sludge settling, especially on Microthrix parvicella[J]. Water Science & Technology, 1998, 37(4): 27-35.
    [48] ANDREASEN K, NIELSEN P H. Application of microautoradiography to the study of substrate uptake by filamentous microorganisms in activated sludge[J]. Applied and Environmental Microbiology, 1997, 63(9): 3662-3668.
    [49] SHEIK A R, MULLER E E, AUDINOT J N, et al. In situ phenotypic heterogeneity among single cells of the filamentous bacterium Candidatus Microthrix parvicella[J]. ISME Journal, 2016, 10(5): 1274-1279.
    [50] XIE B, DAI X C, XU Y T. Cause and pre-alarm control of bulking and foaming by Microthrix parvicella: A case study in triple oxidation ditch at a wastewater treatment plant[J]. Journal of Hazardous Materials, 2007, 143(1): 184-191.
    [51] MARTINS A M P, HEIJNEN J J, LOOSDRECHT M C M V. Effect of dissolved oxygen concentration on sludge settle ability[J]. Applied Microbiology & Biotechnology, 2003, 62(5/6): 586-593.
    [52] HWANG Y, TANAKA T. Control of Microthrix parvicella foaming in activated sludge[J]. Water Research, 1998, 32(5): 1678-1686.
    [53] LEVéN L, WIJNBLADH E, TUVESSON M, et al. Control of Microthrix parvicella and sludge bulking by ozone in a full-scale WWTP[J]. Water Science & Technology, 2016, 73(4): 866-872.
    [54] CHU L, WANG J, WANG B, et al. Changes in biomass activity and characteristics of activated sludge exposed to low ozone dose[J]. Chemosphere, 2009, 77(2): 269-272.
    [55] ROELS T, DAUWE F, VAN D S, et al. The influence of PAX-14 on activated sludge systems and in particular on Microthrix parvicella[J]. Water Science & Technology, 2002, 46(1/2): 487-490.
    [56] RAMI?REZ G W, ALONSO J L, VILLANUEVA A, et al. A rapid, direct method for assessing chlorine effect on filamentous bacteria in activated sludge[J]. Water Research, 2000, 34(15): 3894-3898.
    [57] SéKA M A, KALOGO Y, HAMMES F, et al. Chlorine-susceptible and chlorine-resistant type 021N bacteria occurring in bulking activated sludges[J]. Applied & Environmental Microbiology, 2001, 67(11): 5303-5307.
    [58] SAAYMANT G B, SCHUTTE C F, LEEUWEN J V. The effect of chemical bulking control on biological nutrient removal in a full scale activated sludge plant[J]. Water Science & Technology, 1996, 34(3/4): 275-282.
    [59] SOBECK D C, HIGGINS M J. Examination of three theories for mechanisms of cation-induced bioflocculation[J]. Water Research, 2002, 36(3): 527-538.
    [60] CLAUSS F, HELAINE D, BALAVOINE C, et al. Improving activated sludge floc structure and aggregation for enhanced settling and thickening performances[J]. Water Science & Technology, 1998, 38(8/9): 35-44.
    [61] MAMAIS D, KALAITZI E, ANDREADAKIS A. Foaming control in activated sludge treatment plants by coagulants addition[J]. Global Nest Journal, 2011, 13(3): 237-245.
    [62] PRENDL L, KROIΒ H. Bulking sludge prevention by an aerobic selector[J]. Water Science & Technology, 1998, 38(8): 19-27.
    [63] KRUIT J, HULSBEEK J, VISSER A. Bulking sludge solved[J]. Water Science & Technology, 2002, 46(1/2): 457-464.
    [64] ZHOU J, WANG H, YANG K, et al. Optimization of operation conditions for preventing sludge bulking and enhancing the stability of aerobic granular sludge in sequencing batch reactors[J]. Water Science & Technology, 2014, 70(9): 1519-1525.
    [65] WILéN B M, BALMéR P. The effect of dissolved oxygen concentration on the structure, size and size distribution of activated sludge flocs[J]. Water Research, 1999, 33(2): 391-400.
    [66] FIA?KOWSKA E, PAJDAK-STóS A. The role of Lecane rotifers in activated sludge bulking control[J]. Water Research, 2008, 42(10/11): 2483-2490.
  • 加载中
计量
  • 文章访问数:  7724
  • HTML全文浏览数:  7641
  • PDF下载数:  341
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-02-02

微丝菌诱发污泥膨胀生长特性控制策略研究进展

  • 1. 中国科学院生态环境研究中心,环境水质学国家重点实验室,北京 100085
  • 2. 中国科学院大学,北京 100049
基金项目:

国家水体污染控制与治理重大专项2015ZX07203-005-03国家水体污染控制与治理重大专项(2015ZX07203-005-03)

摘要: 丝状菌过量生长诱发的污泥膨胀现象是城市污水生物处理系统稳定运行面临的巨大挑战,它会造成二沉池固液分离困难、出水水质恶化,严重时导致整体生物处理系统的崩溃。其中,微丝菌(Microthrix parvicella)诱发的污泥膨胀现象因其发生普遍,后果严重,在污水日常工艺运行中对其的预防与控制显得尤为重要。目前,由于微丝菌分离困难,已获得的纯培养物在实验室条件下生长极为缓慢,限制了人们对其生理生化特性的深入认识,为建立有针对性的通用控制策略带来了相当难度。从实际污水处理厂的污泥膨胀现象调查与解析、混合培养体系富集模拟实验的结果表明,微丝菌在低水温(12~15 ℃)、低污泥负荷(-1(以MLSS计))及含长链脂肪酸的环境中具有竞争生长优势,相关组学研究也证实了其对长链脂肪酸具有良好的吸收能力。丝状菌污泥膨胀的控制手段主要包括非特异性技术(如杀菌剂投加)和针对目标丝状菌的特异性技术(如絮凝剂投加、工艺运行参数调节等);而微丝菌膨胀的传统控制策略存在见效慢、成本高、通用性差等特点。迄今为止,我国针对微丝菌诱发污泥膨胀的有效特异性调控策略依然较少。因此,系统总结目前国内外对微丝菌理化特征与生长特性,详细介绍实际工艺运行过程中对其膨胀现象的控制方法,并提出可能的控制策略对未来的研究方向具有重要的现实意义。

English Abstract

参考文献 (66)

目录

/

返回文章
返回