《环境工程学报》第三届编委会2019年度工作会议顺利召开    《环境工程学报》获“2017年度科学传播特殊贡献单位”荣誉称号    《环境工程学报》启用DOI通知设为首页|加入收藏
引用本文
  • 赵济金,吉庆华,兰华春,刘会娟,曲久辉.铁锰改性铜绿微囊藻对锑的吸附性能[J].环境工程学报,2019,13(7):1573-1583.DOI:10.12030/j.cjee.201901071    [点击复制]
  • ZHAO Jijin,JI Qinghua,LAN Huachun,LIU Huijuan,QU Jiuhui.Fabrication of iron-manganese oxide composite modified Microcystis aeroginosa adsorbent for advanced antimony removal[J].,2019,13(7):1573-1583.DOI:10.12030/j.cjee.201901071   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 41次   下载 37 本文二维码信息
码上扫一扫!
铁锰改性铜绿微囊藻对锑的吸附性能
赵济金1,2,吉庆华3,兰华春3,刘会娟3,曲久辉2
0
(1.桂林理工大学环境科学与工程学院,桂林 541004;2.中国科学院生态环境研究中心,环境水质学国家重点实验室,北京 100085;3.清华大学环境学院,环境模拟与污染控制国家重点联合实验室,水质与水生态研究中心,北京 100084)
摘要:
利用生物质吸附去除水中重金属离子具有制备简单、成本低廉、环境影响小等优点,通过高锰酸钾-硫酸亚铁处理过程对铜绿微囊藻改性,制备了能够高效吸附水中锑(Sb)的铁锰改性藻粉复合材料。扫描电镜和X射线光电子能谱分析表明,改性藻粉中存在大量铁锰氧化物颗粒,铁锰的主要存在形式为Fe2O3和MnO2。改性后的复合藻粉对Sb(III)的吸附量从3.06 mg·g-1增加到35.30 mg·g-1,对Sb(V)的吸附量从3.07 mg·g-1增加到4.37 mg·g-1,并且改性后的复合藻粉到达吸附平衡的时间更短。Langmuir 模型可以很好地描述Sb在复合藻粉上的吸附行为,Elovich模型对藻粉吸附Sb(III)和Sb(V)的吸附过程拟合较好(R2=0.957,0.943),而复合藻粉更适用准二级动力学模型(R2=0.953,0.961)。Sb(III)主要通过氧化和吸附作用被去除,而Sb(V)在复合藻粉表面形成表面络合物后被吸附。共存阴离子(SO42-CO32-PO43-)的存在对复合藻粉吸附Sb(III)几乎没有影响,但是共存阴离子浓度越高,对Sb(V)的吸附抑制越明显。
关键词:  吸附剂  微囊藻    铁锰氧化物  吸附动力学模型
DOI:10.12030/j.cjee.201901071
投稿时间:2019-01-10
基金项目:国家水体污染控制与治理科技重大专项2017ZX07207004-5; 国家自然科学基金资助项目51808531国家水体污染控制与治理科技重大专项(2017ZX07207004-5); 国家自然科学基金资助项目(51808531)
Fabrication of iron-manganese oxide composite modified Microcystis aeroginosa adsorbent for advanced antimony removal
ZHAO Jijin1,2,JI Qinghua3,LAN Huachun3,LIU Huijuan3,QU Jiuhui2
(1.College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China;2.State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;3.Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China)
Abstract:
Bioadsorption as a kind of heavy metal biological treatment technology has many advantages, such as low cost, low environmental pollution, and easy process of treatment. Microcystis aeroginosa was modified during its treatment with potassium permanganate and ferrous sulfate, and the iron-manganese modified algae powder composite materials were prepared for antimony removal from water. Scanning electron micrsocopy (SEM) and X-ray photoelectron spectroscopy (XPS) analysis suggests that the modified algae powder contained a large portion of iron (Fe2O3) and manganese (MnO2) oxides particles. In a comparison between normal algae powder and the composite modified algae powder material, the adsorption capacities towards Sb(III) and Sb(V) increased from 3.06 mg·g-1 to 35.30 mg·g-1 and from 3.07 mg·g-1 to 4.37 mg·g-1, respectively, and the adsorption equilibrium time decreased. The antimony adsorption behavior on the modified composite algae could be well described with Langmuir model. The adsorption kinetics of Sb(III) and Sb(V) onto unmodified algae powder could be well fitted with the Elovich model (R2 = 0.957, 0.943), while the adsorption kinetics onto modified algae powder could be well fitted with the Pseudo-second order kinetic model (R2 = 0.953, 0961). Sb(III) removal was primarily ascribed to oxidation and adsorption, and Sb(V) adsorption was assigned as the formation of surface complexes with the modified algae powder. The presence of coexisting anions (SO42-, CO32-, PO43-) had slight effect on the adsorption of Sb(III) by algae powder, while the higher concentrations of anions were, the more remarkable the inhibition of Sb(V) adsorption was.
Key words:  adsorbent  Microsystis aeroginosa  antimony  iron-manganese oxides  adsorption kinetic model