基于好氧反硝化反应器的海水脱氮性能及动力学特征

江玉立, 黄志涛, 宋协法, 陈钊, 董登攀, 彭磊. 基于好氧反硝化反应器的海水脱氮性能及动力学特征[J]. 环境工程学报, 2019, 13(2): 365-371. doi: 10.12030/j.cjee.201807136
引用本文: 江玉立, 黄志涛, 宋协法, 陈钊, 董登攀, 彭磊. 基于好氧反硝化反应器的海水脱氮性能及动力学特征[J]. 环境工程学报, 2019, 13(2): 365-371. doi: 10.12030/j.cjee.201807136
JIANG Yuli, HUANG Zhitao, SONG Xiefa, CHEN Zhao, DONG Dengpan, PENG Lei. Performance and kinetic property of nitrate removal from seawater by an aerobic denitrification bioreactor[J]. Chinese Journal of Environmental Engineering, 2019, 13(2): 365-371. doi: 10.12030/j.cjee.201807136
Citation: JIANG Yuli, HUANG Zhitao, SONG Xiefa, CHEN Zhao, DONG Dengpan, PENG Lei. Performance and kinetic property of nitrate removal from seawater by an aerobic denitrification bioreactor[J]. Chinese Journal of Environmental Engineering, 2019, 13(2): 365-371. doi: 10.12030/j.cjee.201807136

基于好氧反硝化反应器的海水脱氮性能及动力学特征

  • 基金项目:

    国家重点研发计划2017YFD0701700

    国家自然科学基金资助项目31502212国家重点研发计划(2017YFD0701700)

    国家自然科学基金资助项目(31502212)

Performance and kinetic property of nitrate removal from seawater by an aerobic denitrification bioreactor

  • Fund Project:
  • 摘要: 以去除海水循环水养殖系统中硝酸盐(NO3--N)为目的,通过接种好氧反硝化细菌的方式构建海水好氧反硝化反应器,对其反硝化脱氮性能和动力学特征展开研究。研究结果显示,好氧反硝化反应器完成挂膜需要15 d。在有氧条件下,反应器对NO3--N浓度为30~150 mg·L-1海水具有良好的反硝化性能,NO3--N的去除率达到90%以上。批次实验结果显示:好氧反硝化过程呈现阶段性,NO3--N在整个过程中可被高效去除;NO2--N积累最大值随初始NO3--N浓度的增大而增大,且初始NO3--N浓度越高,NO2--N完全去除所需时间越长。采用Monod方程的微分方程模型,能够很好地拟合反硝化过程中NO3--N、NO2--N的变化趋势。该好氧反硝化反应器具有良好的脱氮性能,为解决循环水养殖系统NO3--N积累问题提供了新的思路。
  • 加载中
  • [1] 刘鹰. 工厂化养殖系统优化设计原则[J]. 渔业现代化,2007,34(2):8-9.
    [2] 倪琦, 雷霁霖, 张和森, 等. 我国鲆鲽类循环水养殖系统的研制和运行现状[J]. 渔业现代化,2010,37(4):1-9.
    [3] FREITAG A R, THAYER L A R, LEONETTI C, et al. Effects of elevated nitrate on endocrine function in Atlantic salmon, Salmo salar[J]. Aquaculture, 2015, 436(1): 8-12.
    [4] VAN B, SCHROEDER J P, WUERTZ S, et al. The chronic effect of nitrate on production performance and health status of juvenile turbot (Psettamaxima)[J]. Aquaculture, 2012, 326(1): 163-167.
    [5] FREITAG A R, THAYER L R, HAMLIN H J. Effects of elevated nitrate concentration on early thyroid morphology in Atlantic salmon (Salmo salar Linnaeus, 1758)[J]. Journal of Applied Ichthyology, 2016, 32(2): 296-301.
    [6] HUANG Z T, JESS J, GU J Y, et al. Performance of a recirculating aquaculture system utilizing an algal turf scrubber for scaled-up captive rearing of freshwater mussels (bivalvia: unionidae) [J]. North American Journal of Aquaculture, 2013, 75(4): 543-547.
    [7] SAN S, BRIAN B, ERIC H. Efficacy of a pilot-scale wastewater treatment plant upon a commercial aquaculture effluent: I. Solids and carbonaceous compounds[J]. Aquacultural Engineering, 2008, 39(2): 78-90.
    [8] VOLOKITA M, ABELIOVICH SOARES M I M. Denitrification of groundwater using cotton as energy source[J]. Water Science and Technology, 1996, 34(1/2): 379-385.
    [9] MOHSENI B A, ELLIOTT D J, MOMENY M A. Denitrification of groundwater using acetic acid as a carbon source[J]. Water Science and Technology, 1999, 40(2): 53-59.
    [10] ROBERTSON L, VAN N E, TORREMANS R. Simultaneous nitrification and denitrification in aerobic chemist at cultures of thiosphaera pantotropha[J]. Applied and Environment Microbiology, 1988, 54(11): 2812-2818.
    [11] 唐婧, 肖亚男, 屈姗姗, 等. 一株耐盐好氧反硝化细菌的分离鉴定及其脱氮特性[J]. 环境工程学报, 2014, 8(12): 5499-5506.
    [12] LI P, LIU D, NAHIMANA L, et al. High nitrogen removal from wastewater with several new aerobic bacteria isolated from diverse ecosystems[J]. Journal of Environmental Sciences, 2006, 18(3): 525-529.
    [13] 孙家君, 刘芳, 胡筱敏. 溶解氧和曝气时间对好氧反硝化菌脱氮效果的影响[J]. 环境工程, 2014, 32(12): 62-64.
    [14] WALTER G, PETER K. Respiratory transformation of nitrous oxide (N2O) to dinitrogen by bacteria and archaea[J]. Advancesin Microbial Physiology, 2006, 52: 107-227.
    [15] 赖才胜, 谭洪新, 罗国芝, 等. 利用可生物降解聚合物为碳源和生物膜载体脱氮及其动力学特性研究[J]. 环境科学, 2010, 31(8): 1839-1845.
    [16] NICOLELLA C, LOOSDRECHT M, HEIJNEN J J. Wastewater treatment with particulate biofilm reactors[J]. Journal of Biotechnology, 2000, 80(1): 1-33.
    [17] RHEE S K, LEE J J. Nitrite accumulation in a sequencing batch reactor during the aerobic phase of biological nitrogen removal[J]. Biotechnology Letters, 1997, 19(2): 195-198.
    [18] 谢丽, 蔡碧婧, 杨殿海, 等. 亚硝酸积累条件下反硝化脱氮过程动力学模型[J]. 同济大学学报(自然科学版), 2009, 37(2): 224-228.
    [19] 赖才胜, 谭洪新, 罗国芝, 等. 以聚丁二酸丁二醇酯为碳源去除含盐水体硝酸盐及其动力学模型[J]. 农业工程学报, 2010, 26(8): 285-290.
    [20] LEE K, RITTMANN B. Effects of pH and precipitation on autohydrogenotrophic denitrification using the hollow-fiber membrane-biofilm reactor[J]. Water Research, 2003, 37 (7): 1551-1556.
    [21] GLASS C, SILVERSTEIN J. Denitrification kinetics of high nitrate concentration water: pH effect on inhibition and nitrite accumulation[J]. Water Research, 1998, 32(3): 831-839.
    [22] 黄斯婷, 杨庆, 刘秀红, 等. 不同碳源条件下污水处理反硝化过程亚硝态氮积累特性的研究进展[J]. 水处理技术, 2015, 41(7): 21-25.
    [23] KACZOREK K, LEDAKOWICZ S. Kinetics of nitrogen removal from sanitary landfill leachate[J]. Bioprocess Biosyst English, 2006, 29(5/6): 291-304.
    [24] KIRSTEIN K, BOCK E. Close genetic relation and characterization of the periplasmic reductase from Thiosphaerchiacoli nitrate reductase[J]. Archives Microbial, 1993, 160: 447-453.
    [25] JONG O K, JOHN U, ROCK W Y. Diversity of oxygen and N-oxide regulation of nitrite reductases in denitrifying bacteria[J]. FEMS Microbiology Letters, 1997, 156(1): 55-60.
    [26] QIU X Y, HURT R A, WU L Y, et al. Detection and quantification of copper-denitrifying bacteria by quantitative competitive PCR[J]. Microbiology Methods, 2004, 59(2): 199-210.
  • 加载中
计量
  • 文章访问数:  3541
  • HTML全文浏览数:  3467
  • PDF下载数:  161
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-02-02

基于好氧反硝化反应器的海水脱氮性能及动力学特征

  • 1. 中国海洋大学水产学院,青岛 266003
基金项目:

国家重点研发计划2017YFD0701700

国家自然科学基金资助项目31502212国家重点研发计划(2017YFD0701700)

国家自然科学基金资助项目(31502212)

摘要: 以去除海水循环水养殖系统中硝酸盐(NO3--N)为目的,通过接种好氧反硝化细菌的方式构建海水好氧反硝化反应器,对其反硝化脱氮性能和动力学特征展开研究。研究结果显示,好氧反硝化反应器完成挂膜需要15 d。在有氧条件下,反应器对NO3--N浓度为30~150 mg·L-1海水具有良好的反硝化性能,NO3--N的去除率达到90%以上。批次实验结果显示:好氧反硝化过程呈现阶段性,NO3--N在整个过程中可被高效去除;NO2--N积累最大值随初始NO3--N浓度的增大而增大,且初始NO3--N浓度越高,NO2--N完全去除所需时间越长。采用Monod方程的微分方程模型,能够很好地拟合反硝化过程中NO3--N、NO2--N的变化趋势。该好氧反硝化反应器具有良好的脱氮性能,为解决循环水养殖系统NO3--N积累问题提供了新的思路。

English Abstract

参考文献 (26)

目录

/

返回文章
返回