pH和溶解性有机质对磺胺甲恶唑光降解的影响

赵芙蓉, 王飞, 耿环环, 韩晓敏. pH和溶解性有机质对磺胺甲恶唑光降解的影响[J]. 环境工程学报, 2019, 13(2): 356-364. doi: 10.12030/j.cjee.201808150
引用本文: 赵芙蓉, 王飞, 耿环环, 韩晓敏. pH和溶解性有机质对磺胺甲恶唑光降解的影响[J]. 环境工程学报, 2019, 13(2): 356-364. doi: 10.12030/j.cjee.201808150
ZHAO Furong, WANG Fei, GENG Huanhuan, HAN Xiaomin. Effects of pH and dissolved organic matter on sulfamethoxazole photodegradation[J]. Chinese Journal of Environmental Engineering, 2019, 13(2): 356-364. doi: 10.12030/j.cjee.201808150
Citation: ZHAO Furong, WANG Fei, GENG Huanhuan, HAN Xiaomin. Effects of pH and dissolved organic matter on sulfamethoxazole photodegradation[J]. Chinese Journal of Environmental Engineering, 2019, 13(2): 356-364. doi: 10.12030/j.cjee.201808150

pH和溶解性有机质对磺胺甲恶唑光降解的影响

  • 基金项目:

    国家自然科学基金资助项目41473096,41822706

    北京市自然科学基金资助项目8182034国家自然科学基金资助项目(41473096,41822706)

    北京市自然科学基金资助项目(8182034)

Effects of pH and dissolved organic matter on sulfamethoxazole photodegradation

  • Fund Project:
  • 摘要: 为了考察pH和溶解性有机质(DOM)对磺胺甲恶唑(SMX)自然光降解的影响,采用光化学反应器对SMX降解过程进行模拟实验,并利用傅里叶变换红外光谱(FT-IR)和三维荧光光谱(3DEEM)对腐殖酸进行表征。结果表明:SMX光解过程符合准一级反应动力学方程,在中等酸性条件下反应速率明显高于中性或碱性条件;添加不同浓度的Pahokee泥炭腐殖酸(PPHA)和Sigma-Aldrich腐殖酸(SigHA)时,均对SMX的光降解产生了不同程度的抑制作用;FT-IR检测发现,PPHA与SigHA均含有含氧官能团,具有一定的还原能力,3DEEM显示PPHA具有荧光特性,可能和SMX结合生成配合物。pH影响SMX的光解与物质本身的酸离解常数有关,对光子的竞争、淬灭作用和掩蔽效应可能是PPHA和SigHA对SMX光降解抑制作用的主要原因。
  • 加载中
  • [1] 金明兰, 刘凯, 徐莹莹, 等. 污水处理厂中磺胺类抗生素、抗性菌、抗性基因的特性[J]. 环境工程, 2015, 33(11): 1-4.
    [2] 秦丽婷, 童蕾, 刘慧, 等. 环境中磺胺类抗生素的生物降解及其抗性基因污染现状[J]. 环境化学, 2016, 35(5): 875-883.
    [3] 赵腾辉, 陈奕涵, 韩巍, 等. 东江上游典型抗生素污染特征及生态风险评价[J]. 生态环境学报, 2016, 25(10): 1707-1713.
    [4] 武旭跃, 邹华, 朱荣, 等. 太湖贡湖湾水域抗生素污染特征分析与生态风险评价[J]. 环境科学, 2016, 37(12): 4596-4604.
    [5] 汪涛, 杨再福, 陈勇航, 等. 地表水中磺胺类抗生素的生态风险评价[J]. 生态环境学报, 2016, 25(9): 1508-1514.
    [6] 章强, 辛琦, 朱静敏, 等. 中国主要水域抗生素污染现状及其生态环境效应研究进展[J]. 环境化学, 2014, 33(7): 1075-1083.
    [7] KüMMERER K. Antibiotics in the aquatic environment: A review: Part I[J]. Chemosphere, 2009, 75(4): 417-434.
    [8] HOMEM V, SANTOS L. Degradation and removal methods of antibiotics from aqueous matrices: A review[J]. Journal of Environmental Management, 2011, 92(10): 2304-2347.
    [9] YAN S, SONG W. Photo-transformation of pharmaceutically active compounds in the aqueous environment: A review[J]. Environmental Science: Processes and Impacts, 2014, 16(4): 697-720.
    [10] BOREEN A L, ARNOLD W A, MCNEILL K. Photodegradation of pharmaceuticals in the aquatic environment: A review[J]. Aquatic Sciences, 2003, 65(4): 320-341.
    [11] 常海莎, 闫豫君, 鲁建江, 等. 螺旋霉素在水溶液中的光降解[J]. 环境化学, 2018, 37(6): 1343-1350.
    [12] 张志超. 典型兽药在水体中光降解研究[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2018.
    [13] 吴丰昌, 刘丛强, 傅平青, 等. 天然溶解有机质生物地球化学与生态环境效应[C]//中国矿物岩石地球化学学会. 中国矿物岩石地球化学学会第十届学术年会论文集. 武汉, 2005.
    [14] KLUCAKOVA M, VEZNIKOVA K. Micro-organization of humic acids in aqueous solutions[J]. Journal of Molecular Structure, 2017, 1144: 33-40.
    [15] AQUINO A J A, TUNEGA D, PASALIC H, et al. Molecular dynamics simulations of water molecule-bridges in polar domains of humic acids[J]. Environmental Science & Technology, 2011, 45(19): 8411-8419.
    [16] GRZYBOWSKI W. Terrestrial humic substances induce photodegradation of polysaccharides in the aquatic environment[J]. Photochemical & Photobiological Sciences, 2009, 8(12): 1755-1755.
    [17] 冯瑞华, 彭平安, 宋建中, 等. Pahokee泥炭腐殖酸的电喷雾质谱特征研究[J]. 地球与环境, 2005(1): 43-54.
    [18] YUCEL M, KONOVALOV S K, MOORE T S, et al. Sulfur speciation in the upper Black Sea sediments[J]. Chemical Geology, 2010, 269(3/4): 364-375.
    [19] KNORR K, LISCHEID G, BLODAU C. Dynamics of redox processes in a minerotrophic fen exposed to a water table manipulation[J]. Geoderma, 2009, 153(3/4): 379-392.
    [20] ZAK D, GELBRECHT J. The mobilisation of phosphorus, organic carbon and ammonium in the initial stage of fen rewetting (a case study from NE Germany)[J]. Biogeochemistry, 2007, 85(2): 141-151.
    [21] BOREEN A L, ARNOLD W A, MCNEILL K. Photochemical fate of sulfa drugs in the aquatic environment: Sulfa drugs containing five-membered heterocyclic groups[J]. Environmental Science & Technology, 2004, 38(14): 3933-3940.
    [22] BELTRAN F J, AGUINACO A, GARCIA-ARAYA J F. Mechanism and kinetics of sulfamethoxazole photocatalytic ozonation in water[J]. Water Research, 2009, 43(5): 1359-1369.
    [23] RADKE M, LAUWIGI C, HEINKELE G, et al. Fate of the antibiotic sulfamethoxazole and its two major human metabolites in a water sediment test[J]. Environmental Science & Technology, 2009, 43(9): 3135-3141.
    [24] TROVO A G, NOGUEIRA R F P, AGUEERA A, et al. Photodegradation of sulfamethoxazole in various aqueous media: Persistence, toxicity and photoproducts assessment[J]. Chemosphere, 2009, 77(10): 1292-1298.
    [25] NIU J, ZHANG L, LI Y, et al. Effects of environmental factors on sulfamethoxazole photodegradation under simulated sunlight irradiation: Kinetics and mechanism[J]. Journal of Environmental Sciences, 2013, 25(6): 1098-1106.
    [26] UYGUNER-DEMIREL C S, BEKBOLET M. Significance of analytical parameters for the understanding of natural organic matter in relation to photocatalytic oxidation[J]. Chemosphere, 2011, 84(8): 1009-1031.
    [27] PORRAS J, BEDOYA C, SILVA-AGREDO J, et al. Role of humic substances in the degradation pathways and residual antibacterial activity during the photodecomposition of the antibiotic ciprofloxacin in water[J]. Water Research, 2016, 94: 1-9.
    [28] RODRíGUEZ E M, GORDILLO M V, REY A, et al. Impact of TiO2/UVA photocatalysis on THM formation potential[J]. Catalysis Today, 2018, 313: 167-174.
    [29] HEITMANN T, BLODAU C. Oxidation and incorporation of hydrogen sulfide by dissolved organic matter[J]. Chemical Geology, 2006, 235(1/2): 12-20.
    [30] SEN K S, BEKBOLET M. Tracing TiO2 photocatalytic degradation of humic acid in the presence of clay particles by excitation-emission matrix (EEM) fluorescence spectra[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 282: 53-61.
    [31] COBLE P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry, 1996, 51(4): 325-346.
    [32] 傅平青, 刘丛强, 尹祚莹, 等. 腐殖酸三维荧光光谱特性研究[J]. 地球化学, 2004(3): 301-308
    [33] LI R, ZHAO C, YAO B, et al. Photochemical transformation of aminoglycoside antibiotics in simulated natural waters[J]. Environmental Science & Technology, 2016, 50(6): 2921-2930.
    [34] LI T, JIANG Y, AN X, et al. Transformation of humic acid and halogenated byproduct formation in UV-chlorine processes[J]. Water Research, 2016, 102: 421-427.
    [35] AESCHBACHER M, GRAF C, SCHWARZENBACH R P, et al. Antioxidant properties of humic substances[J]. Environmental Science & Technology, 2012, 46(9): 4916-4925.
    [36] 李英杰. 河口水中溶解性物质对磺胺类抗生素光降解行为的影响[D]. 大连: 大连理工大学, 2016.
    [37] TZENG T, WANG S, CHEN C, et al. Photolysis and photocatalytic decomposition of sulfamethazine antibiotics in an aqueous solution with TiO2[J]. RSC Advances, 2016, 6(73): 69301-69310.
    [38] BATISTA A P S, PIRES F C C, TEIXEIRA A C S C. Photochemical degradation of sulfadiazine, sulfamerazine and sulfamethazine: Relevance of concentration and heterocyclic aromatic groups to degradation kinetics[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 286: 40-46.
    [39] LI Y, CHEN J, QIAO X, et al. Insights into photolytic mechanism of sulfapyridine induced by triplet-excited dissolved organic matter[J]. Chemosphere, 2016, 147: 305-310.
    [40] VIONE D, MINELLA M, MAURINO V, et al. Indirect photochemistry in sunlit surface waters: Photoinduced production of reactive transient species[J]. Chemistry, 2014, 20(34): 10590-10606.
    [41] GE L, NA G, ZHANG S, et al. New insights into the aquatic photochemistry of fluoroquinolone antibiotics: Direct photodegradation, hydroxyl-radical oxidation, and antibacterial activity changes[J]. Science of the Total Environment, 2015, 527-528: 12-17.
    [42] CARLOS L, MARTIRE D O, GONZALEZ M C, et al. Photochemical fate of a mixture of emerging pollutants in the presence of humic substances[J]. Water Research, 2012, 46(15): 4732-4740.
    [43] 杨悦锁, 王园园, 宋晓明, 等. 土壤和地下水环境中胶体与污染物共迁移研究进展[J]. 化工学报, 2017, 68(1): 23-36.
    [44] 梁雨, 何江涛, 张思. DOM不同相对分子质量组分在无机矿物上的吸附及其对卡马西平吸附的影响实验[J]. 环境科学, 2018, 39(5): 2219-2229.
  • 加载中
计量
  • 文章访问数:  4745
  • HTML全文浏览数:  4661
  • PDF下载数:  203
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-02-02

pH和溶解性有机质对磺胺甲恶唑光降解的影响

  • 1. 北京科技大学能源与环境工程学院,北京 100083
基金项目:

国家自然科学基金资助项目41473096,41822706

北京市自然科学基金资助项目8182034国家自然科学基金资助项目(41473096,41822706)

北京市自然科学基金资助项目(8182034)

摘要: 为了考察pH和溶解性有机质(DOM)对磺胺甲恶唑(SMX)自然光降解的影响,采用光化学反应器对SMX降解过程进行模拟实验,并利用傅里叶变换红外光谱(FT-IR)和三维荧光光谱(3DEEM)对腐殖酸进行表征。结果表明:SMX光解过程符合准一级反应动力学方程,在中等酸性条件下反应速率明显高于中性或碱性条件;添加不同浓度的Pahokee泥炭腐殖酸(PPHA)和Sigma-Aldrich腐殖酸(SigHA)时,均对SMX的光降解产生了不同程度的抑制作用;FT-IR检测发现,PPHA与SigHA均含有含氧官能团,具有一定的还原能力,3DEEM显示PPHA具有荧光特性,可能和SMX结合生成配合物。pH影响SMX的光解与物质本身的酸离解常数有关,对光子的竞争、淬灭作用和掩蔽效应可能是PPHA和SigHA对SMX光降解抑制作用的主要原因。

English Abstract

参考文献 (44)

目录

/

返回文章
返回