基于DTT法评估大气颗粒物氧化潜势的研究进展

王嘉琦, 赵时真, 田乐乐, 蒋昊余, 李军, 张干. 基于DTT法评估大气颗粒物氧化潜势的研究进展[J]. 生态毒理学报, 2022, 17(2): 20-32. doi: 10.7524/AJE.1673-5897.20210720005
引用本文: 王嘉琦, 赵时真, 田乐乐, 蒋昊余, 李军, 张干. 基于DTT法评估大气颗粒物氧化潜势的研究进展[J]. 生态毒理学报, 2022, 17(2): 20-32. doi: 10.7524/AJE.1673-5897.20210720005
Wang Jiaqi, Zhao Shizhen, Tian Lele, Jiang Haoyu, Li Jun, Zhang Gan. Research Advance in Use of Dithiothreitol Assay to Evaluate Particulate Matter Oxidative Potential[J]. Asian Journal of Ecotoxicology, 2022, 17(2): 20-32. doi: 10.7524/AJE.1673-5897.20210720005
Citation: Wang Jiaqi, Zhao Shizhen, Tian Lele, Jiang Haoyu, Li Jun, Zhang Gan. Research Advance in Use of Dithiothreitol Assay to Evaluate Particulate Matter Oxidative Potential[J]. Asian Journal of Ecotoxicology, 2022, 17(2): 20-32. doi: 10.7524/AJE.1673-5897.20210720005

基于DTT法评估大气颗粒物氧化潜势的研究进展

    作者简介: 王嘉琦(1993—),女,博士,研究方向为大气颗粒物的化学组成及其健康效应,E-mail: wangjiaqi199312@126.com
    通讯作者: 赵时真, E-mail: zhaoshizhen@gig.ac.cn
  • 基金项目:

    国家自然科学基金资助项目(42030715,42107120);“一带一路”国际科学组织联盟资助项目(ANSO-CR-KP-2021-05)

  • 中图分类号: X171.5

Research Advance in Use of Dithiothreitol Assay to Evaluate Particulate Matter Oxidative Potential

    Corresponding author: Zhao Shizhen, zhaoshizhen@gig.ac.cn
  • Fund Project:
  • 摘要: 大气颗粒物导致健康效应的主要机制是通过氧化应激生成活性氧自由基(reactive oxygen species, ROS),触发局部和全身系统性炎症。大气颗粒诱导ROS生成的能力称为氧化潜势(oxidative potential, OP),是指示颗粒物健康效应的重要参数。二硫苏糖醇(dithiothreitol, DTT)法是基于非细胞体系检测氧化潜势的方法(OPDTT),近年来发展迅速。笔者从OPDTT的基本原理,OPDTT与颗粒物化学组成、粒径、来源的关系,OPDTT与健康效应的关系及其局限性和挑战等6个方面,综述基于DTT法的大气颗粒物氧化潜势测定方法研究和应用进展,可为我国大气颗粒物健康效应的研究提供参考。
  • 加载中
  • Abrams J Y, Weber R J, Klein M, et al. Associations between ambient fine particulate oxidative potential and cardiorespiratory emergency department visits [J]. Environmental Health Perspectives, 2017, 125(10): 107008
    Yang A, Janssen N A H, Brunekreef B, et al. Children’s respiratory health and oxidative potential of PM2.5: The PIAMA birth cohort study [J]. Occupational and Environmental Medicine, 2016, 73(3): 154-160
    Fang T, Verma V, Bates J T, et al. Oxidative potential of ambient water-soluble PM2.5 in the southeastern United States: Contrasts in sources and health associations between ascorbic acid (AA) and dithiothreitol (DTT) assays [J]. Atmospheric Chemistry and Physics, 2016, 16(6): 3865-3879
    Bates J T, Fang T, Verma V, et al. Review of acellular assays of ambient particulate matter oxidative potential: Methods and relationships with composition, sources, and health effects [J]. Environmental Science & Technology, 2019, 53(8): 4003-4019
    Perrone M G, Zhou J, Malandrino M, et al. PM chemical composition and oxidative potential of the soluble fraction of particles at two sites in the urban area of Milan, Northern Italy [J]. Atmospheric Environment, 2016, 128: 104-113
    Ayres J G, Borm P, Cassee F R, et al. Evaluating the toxicity of airborne particulate matter and nanoparticles by measuring oxidative stress potential: A workshop report and consensus statement [J]. Inhalation Toxicology, 2008, 20(1): 75-99
    Rahman I, MacNee W. Oxidative stress and regulation of glutathione in lung inflammation [J]. European Respiratory Journal, 2000, 16(3): 534-554
    Alfadda A A, Sallam R M. Reactive oxygen species in health and disease [J]. Journal of Biomedicine & Biotechnology, 2012, 2012: 936486
    Datta K, Sinha S, Chattopadhyay P. Reactive oxygen species in health and disease [J]. The National Medical Journal of India, 2000, 13(6): 304-310
    Xiong Q S, Yu H R, Wang R R, et al. Rethinking dithiothreitol-based particulate matter oxidative potential: Measuring dithiothreitol consumption versus reactive oxygen species generation [J]. Environmental Science & Technology, 2017, 51(11): 6507-6514
    Jiang H, Ahmed C M S, Canchola A, et al. Use of dithiothreitol assay to evaluate the oxidative potential of atmospheric aerosols [J]. Atmosphere, 2019, 10(10): 571
    Charrier J G, Anastasio C. On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: Evidence for the importance of soluble transition metals [J]. Atmospheric Chemistry and Physics, 2012, 12(5): 11317-11350
    Wang J Q, Jiang H Y, Jiang H X, et al. Source apportionment of water-soluble oxidative potential in ambient total suspended particulate from Bangkok: Biomass burning versus fossil fuel combustion [J]. Atmospheric Environment, 2020, 235: 117624
    Cho A K, Sioutas C, Miguel A H, et al. Redox activity of airborne particulate matter at different sites in the Los Angeles Basin [J]. Environmental Research, 2005, 99(1): 40-47
    Li Q F, Wyatt A, Kamens R M. Oxidant generation and toxicity enhancement of aged-diesel exhaust [J]. Atmospheric Environment, 2009, 43(5): 1037-1042
    Kumagai Y, Koide S, Taguchi K, et al. Oxidation of proximal protein sulfhydryls by phenanthraquinone, a component of diesel exhaust particles [J]. Chemical Research in Toxicology, 2002, 15(4): 483-489
    Fang T, Verma V, Guo H, et al. A semi-automated system for quantifying the oxidative potential of ambient particles in aqueous extracts using the dithiothreitol (DTT) assay: Results from the Southeastern Center for Air Pollution and Epidemiology (SCAPE) [J]. Atmospheric Measurement Techniques, 2015, 8(1): 471-482
    Lin M F, Yu J Z. Effect of metal-organic interactions on the oxidative potential of mixtures of atmospheric humic-like substances and copper/manganese as investigated by the dithiothreitol assay [J]. Science of the Total Environment, 2019, 697: 134012
    See S W, Wang Y H, Balasubramanian R. Contrasting reactive oxygen species and transition metal concentrations in combustion aerosols [J]. Environmental Research, 2007, 103(3): 317-324
    Shinyashiki M, Eiguren-Fernandez A, Schmitz D A, et al. Electrophilic and redox properties of diesel exhaust particles [J]. Environmental Research, 2009, 109(3): 239-244
    Verma V, Shafer M M, Schauer J J, et al. Contribution of transition metals in the reactive oxygen species activity of PM emissions from retrofitted heavy-duty vehicles [J]. Atmospheric Environment, 2010, 44(39): 5165-5173
    McWhinney R D, Zhou S, Abbatt J P D. Naphthalene SOA: Redox activity and naphthoquinone gas-particle partitioning [J]. Atmospheric Chemistry and Physics, 2013, 13(19): 9731-9744
    Chung M Y, Lazaro R A, Lim D, et al. Aerosol-borne quinones and reactive oxygen species generation by particulate matter extracts [J]. Environmental Science & Technology, 2006, 40(16): 4880-4886
    Ntziachristos L, Froines J R, Cho A K, et al. Relationship between redox activity and chemical speciation of size-fractionated particulate matter [J]. Particle and Fibre Toxicology, 2007, 4: 5
    Verma V, Pakbin P, Cheung K L, et al. Physicochemical and oxidative characteristics of semi-volatile components of quasi-ultrafine particles in an urban atmosphere [J]. Atmospheric Environment, 2011, 45(4): 1025-1033
    Alam M S, Delgado-Saborit J M, Stark C, et al. Using atmospheric measurements of PAH and quinone compounds at roadside and urban background sites to assess sources and reactivity [J]. Atmospheric Environment, 2013, 77: 24-35
    Verma V, Rico-Martinez R, Kotra N, et al. Contribution of water-soluble and insoluble components and their hydrophobic/hydrophilic subfractions to the reactive oxygen species-generating potential of fine ambient aerosols [J]. Environmental Science & Technology, 2012, 46(20): 11384-11392
    Lin P, Yu J Z. Generation of reactive oxygen species mediated by humic-like substances in atmospheric aerosols [J]. Environmental Science & Technology, 2011, 45(24): 10362-10368
    Dou J, Lin P, Kuang B Y, et al. Reactive oxygen species production mediated by humic-like substances in atmospheric aerosols: Enhancement effects by pyridine, imidazole, and their derivatives [J]. Environmental Science & Technology, 2015, 49(11): 6457-6465
    Anderson H R, Atkinson R W, Peacock J L, et al. Meta-analysis of time-series studies and panel studies of particulate matter (PM) and ozone (O3): Report of a WHO task group [R]. Geneva: WHO, 2004
    Cao J J, Xu H M, Xu Q, et al. Fine particulate matter constituents and cardiopulmonary mortality in a heavily polluted Chinese City [J]. Environmental Health Perspectives, 2012, 120(3): 373-378
    Jiang H H, Jang M, Sabo-Attwood T, et al. Oxidative potential of secondary organic aerosols produced from photooxidation of different hydrocarbons using outdoor chamber under ambient sunlight [J]. Atmospheric Environment, 2016, 131: 382-389
    Tuet W Y, Chen Y L, Xu L, et al. Chemical oxidative potential of secondary organic aerosol (SOA) generated from the photooxidation of biogenic and anthropogenic volatile organic compounds [J]. Atmospheric Chemistry and Physics, 2017, 17(2): 839-853
    Chen J Y, Jiang H H, Chen S J, et al. Characterization of electrophilicity and oxidative potential of atmospheric carbonyls [J]. Environmental Science Processes & Impacts, 2019, 21(5): 856-866
    Jiang H H, Jang M. Dynamic oxidative potential of atmospheric organic aerosol under ambient sunlight [J]. Environmental Science & Technology, 2018, 52(13): 7496-7504
    Gant T W, Ramakrishna Rao D N, Mason R P, et al. Redox cycling and sulphydryl arylation; their relative importance in the mechanism of quinone cytotoxicity to isolated hepatocytes [J]. Chemico-Biological Interactions, 1988, 65(2): 157-173
    Tobias H J, Ziemann P J. Thermal desorption mass spectrometric analysis of organic aerosol formed from reactions of 1-tetradecene and O3 in the presence of alcohols and carboxylic acids [J]. Environmental Science & Technology, 2000, 34(11): 2105-2115
    Wang Y, Kim H, Paulson S E. Hydrogen peroxide generation from α- and β-pinene and toluene secondary organic aerosols [J]. Atmospheric Environment, 2011, 45(18): 3149-3156
    Docherty K S, Jaoui M, Corse E, et al. Collection efficiency of the aerosol mass spectrometer for chamber-generated secondary organic aerosols [J]. Aerosol Science and Technology, 2013, 47(3): 294-309
    Lazzé M C, Pizzala R, Savio M, et al. Anthocyanins protect against DNA damage induced by tert-butyl-hydroperoxide in rat smooth muscle and hepatoma cells [J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2003, 535(1): 103-115
    Kramer A J, Rattanavaraha W, Zhang Z F, et al. Assessing the oxidative potential of isoprene-derived epoxides and secondary organic aerosol [J]. Atmospheric Environment, 2016, 130: 211-218
    Cai Y T, Schikowski T, Adam M, et al. Cross-sectional associations between air pollution and chronic bronchitis: An ESCAPE meta-analysis across five cohorts [J]. Thorax, 2014, 69(11): 1005-1014
    Kang I G, Ju Y H, Jung J H, et al. The effect of PM10 on allergy symptoms in allergic rhinitis patients during spring season [J]. International Journal of Environmental Research and Public Health, 2015, 12(1): 735-745
    Li N, Sioutas C, Cho A, et al. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage [J]. Environmental Health Perspectives, 2003, 111(4): 455-460
    Jeng H A. Chemical composition of ambient particulate matter and redox activity [J]. Environmental Monitoring and Assessment, 2010, 169(1-4): 597-606
    Fang T, Zeng L H, Gao D, et al. Ambient size distributions and lung deposition of aerosol dithiothreitol-measured oxidative potential: Contrast between soluble and insoluble particles [J]. Environmental Science & Technology, 2017, 51(12): 6802-6811
    Samara C. On the redox activity of urban aerosol particles: Implications for size distribution and relationships with organic aerosol components [J]. Atmosphere, 2017, 8(12): 205
    Fang T, Guo H Y, Zeng L H, et al. Highly acidic ambient particles, soluble metals, and oxidative potential: A link between sulfate and aerosol toxicity [J]. Environmental Science & Technology, 2017, 51(5): 2611-2620
    McCreanor J, Cullinan P, Nieuwenhuijsen M J, et al. Respiratory effects of exposure to diesel traffic in persons with asthma [J]. The New England Journal of Medicine, 2007, 357(23): 2348-2358
    Pourazar J, Mudway I S, Samet J M, et al. Diesel exhaust activates redox-sensitive transcription factors and kinases in human airways [J]. American Journal of Physiology Lung Cellular and Molecular Physiology, 2005, 289(5): L724-L730c
    Bräuner E V, Forchhammer L, Møller P, et al. Indoor particles affect vascular function in the aged: An air filtration-based intervention study [J]. American Journal of Respiratory and Critical Care Medicine, 2008, 177(4): 419-425
    Zelikoff J T, Chen L C, Cohen M D, et al. The toxicology of inhaled woodsmoke [J]. Journal of Toxicology and Environmental Health, Part B, 2002, 5(3): 269-282
    Ghio A J, Silbajoris R, Carson J L, et al. Biologic effects of oil fly ash [J]. Environmental Health Perspectives, 2002, 110(Suppl 1): 89-94
    Borm P J A. Toxicity and occupational health hazards of coal fly ash (CFA). A review of data and comparison to coal mine dust [J]. The Annals of Occupational Hygiene, 1997, 41(6): 659-676
    Wang Y, Arellanes C, Curtis D B, et al. Probing the source of hydrogen peroxide associated with coarse mode aerosol particles in southern California [J]. Environmental Science & Technology, 2010, 44(11): 4070-4075
    Charrier J G, Richards-Henderson N K, Bein K J, et al. Oxidant production from source-oriented particulate matter: Part 1: Oxidative potential using the dithiothreitol (DTT) assay [J]. Atmospheric Chemistry and Physics, 2015, 15(5): 2327-2340
    Daellenbach K R, Uzu G, Jiang J, et al. Sources of particulate-matter air pollution and its oxidative potential in Europe [J]. Nature, 2020, 587(7834): 414-419
    Verma V, Fang T, Xu L, et al. Organic aerosols associated with the generation of reactive oxygen species (ROS) by water-soluble PM2.5 [J]. Environmental Science & Technology, 2015, 49(7): 4646-4656
    Fujitani Y, Furuyama A, Tanabe K, et al. Comparison of oxidative abilities of PM2.5 collected at traffic and residential sites in Japan. Contribution of transition metals and primary and secondary aerosols [J]. Aerosol and Air Quality Research, 2017, 17(2): 574-587
    Cheung K L, Polidori A, Ntziachristos L, et al. Chemical characteristics and oxidative potential of particulate matter emissions from gasoline, diesel, and biodiesel cars [J]. Environmental Science & Technology, 2009, 43(16): 6334-6340
    McWhinney R D, Badali K, Liggio J, et al. Filterable redox cycling activity: A comparison between diesel exhaust particles and secondary organic aerosol constituents [J]. Environmental Science & Technology, 2013, 47(7): 3362-3369
    Fushimi A, Saitoh K, Hayashi K, et al. Chemical characterization and oxidative potential of particles emitted from open burning of cereal straws and rice husk under flaming and smoldering conditions [J]. Atmospheric Environment, 2017, 163: 118-127
    Li Q, Shang J, Zhu T. Physicochemical characteristics and toxic effects of ozone-oxidized black carbon particles [J]. Atmospheric Environment, 2013, 81: 68-75
    Fox J R, Cox D P, Drury B E, et al. Chemical characterization and in vitro toxicity of diesel exhaust particulate matter generated under varying conditions [J]. Air Quality, Atmosphere & Health, 2015, 8(5): 507-519
    Verma V, Ning Z, Cho A K, et al. Redox activity of urban quasi-ultrafine particles from primary and secondary sources [J]. Atmospheric Environment, 2009, 43(40): 6360-6368
    Karavalakis G, Gysel N, Schmitz D A, et al. Impact of biodiesel on regulated and unregulated emissions, and redox and proinflammatory properties of PM emitted from heavy-duty vehicles [J]. Science of the Total Environment, 2017, 584-585: 1230-1238
    Shirmohammadi F, Wang D B, Hasheminassab S, et al. Oxidative potential of on-road fine particulate matter (PM2.5) measured on major freeways of Los Angeles, CA, and a 10-year comparison with earlier roadside studies [J]. Atmospheric Environment, 2017, 148: 102-114
    Verma V, Fang T, Guo H, et al. Reactive oxygen species associated with water-soluble PM2.5 in the southeastern United States: Spatiotemporal trends and source apportionment [J]. Atmospheric Chemistry and Physics, 2014, 14(23): 12915-12930
    Yu S Y, Liu W J, Xu Y S, et al. Characteristics and oxidative potential of atmospheric PM2.5 in Beijing: Source apportionment and seasonal variation [J]. Science of the Total Environment, 2019, 650: 277-287
    Bates J T, Weber R J, Abrams J, et al. Reactive oxygen species generation linked to sources of atmospheric particulate matter and cardiorespiratory effects [J]. Environmental Science & Technology, 2015, 49(22): 13605-13612
    Shen H Z, Huang Y, Wang R, et al. Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions [J]. Environmental Science & Technology, 2013, 47(12): 6415-6424
    Saffari A, Daher N, Samara C, et al. Increased biomass burning due to the economic crisis in Greece and its adverse impact on wintertime air quality in Thessaloniki [J]. Environmental Science & Technology, 2013, 47(23): 13313-13320
    Verma V, Polidori A, Schauer J J, et al. Physicochemical and toxicological profiles of particulate matter in Los Angeles during the October 2007 southern California wildfires [J]. Environmental Science & Technology, 2009, 43(3): 954-960
    Vreeland H, Schauer J J, Russell A G, et al. Chemical characterization and toxicity of particulate matter emissions from roadside trash combustion in urban India [J]. Atmospheric Environment, 2016, 147: 22-30
    Liu Q Y, Baumgartner J, Zhang Y X, et al. Oxidative potential and inflammatory impacts of source apportioned ambient air pollution in Beijing [J]. Environmental Science & Technology, 2014, 48(21): 12920-12929
    Secrest M H, Schauer J J, Carter E M, et al. The oxidative potential of PM2.5 exposures from indoor and outdoor sources in rural China [J]. Science of the Total Environment, 2016, 571: 1477-1489
    Chirizzi D, Cesari D, Guascito M R, et al. Influence of Saharan dust outbreaks and carbon content on oxidative potential of water-soluble fractions of PM2.5 and PM10 [J]. Atmospheric Environment, 2017, 163: 1-8
    Samake A, Uzu G, Martins J M F, et al. The unexpected role of bioaerosols in the Oxidative Potential of PM [J]. Scientific Reports, 2017, 7(1): 10978
    Janssen N A H, Strak M, Yang A, et al. Associations between three specific a-cellular measures of the oxidative potential of particulate matter and markers of acute airway and nasal inflammation in healthy volunteers [J]. Occupational and Environmental Medicine, 2015, 72(1): 49-56
    Dweik R A, Boggs P B, Erzurum S C, et al. An official ATS clinical practice guideline: Interpretation of exhaled nitric oxide levels (FENO) for clinical applications [J]. American Journal of Respiratory and Critical Care Medicine, 2011, 184(5): 602-615
    Akhtar U S, McWhinney R D, Rastogi N, et al. Cytotoxic and proinflammatory effects of ambient and source-related particulate matter (PM) in relation to the production of reactive oxygen species (ROS) and cytokine adsorption by particles [J]. Inhalation Toxicology, 2010, 22(sup2): 37-47
    Carolina M, Richard T A, Manzano C A, et al. Airborne aerosols and human health: Leapfrogging from mass concentration to oxidative potential [J]. Atmosphere, 2020, 11(9): 917
    Zhang Y X, Schauer J J, Shafer M M, et al. Source apportionment of in vitro reactive oxygen species bioassay activity from atmospheric particulate matter [J]. Environmental Science & Technology, 2008, 42(19): 7502-7509
    Gallimore P J, Mahon B M, Wragg F P H, et al. Multiphase composition changes and reactive oxygen species formation during limonene oxidation in the new Cambridge Atmospheric Simulation Chamber (CASC) [J]. Atmospheric Chemistry and Physics, 2017, 17(16): 9853-9868
    Alpert P A, Dou J, Corral Arroyo P, et al. Photolytic radical persistence due to anoxia in viscous aerosol particles [J]. Nature Communications, 2021, 12: 1769
    Venkatachari P, Hopke P K. Development and laboratory testing of an automated monitor for the measurement of atmospheric particle-bound reactive oxygen species (ROS) [J]. Aerosol Science and Technology, 2008, 42(8): 629-635
    Velali E, Papachristou E, Pantazaki A, et al. Redox activity and in vitro bioactivity of the water-soluble fraction of urban particulate matter in relation to particle size and chemical composition [J]. Environmental Pollution, 2016, 208: 774-786
  • 加载中
计量
  • 文章访问数:  3410
  • HTML全文浏览数:  3410
  • PDF下载数:  224
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-07-20

基于DTT法评估大气颗粒物氧化潜势的研究进展

    通讯作者: 赵时真, E-mail: zhaoshizhen@gig.ac.cn
    作者简介: 王嘉琦(1993—),女,博士,研究方向为大气颗粒物的化学组成及其健康效应,E-mail: wangjiaqi199312@126.com
  • 1. 中国科学院广州地球化学研究所,有机地球化学国家重点实验室,广州 510640;
  • 2. 郑州大学电气工程学院,郑州 450001;
  • 3. 中国科学院大学,北京 100049
基金项目:

国家自然科学基金资助项目(42030715,42107120);“一带一路”国际科学组织联盟资助项目(ANSO-CR-KP-2021-05)

摘要: 大气颗粒物导致健康效应的主要机制是通过氧化应激生成活性氧自由基(reactive oxygen species, ROS),触发局部和全身系统性炎症。大气颗粒诱导ROS生成的能力称为氧化潜势(oxidative potential, OP),是指示颗粒物健康效应的重要参数。二硫苏糖醇(dithiothreitol, DTT)法是基于非细胞体系检测氧化潜势的方法(OPDTT),近年来发展迅速。笔者从OPDTT的基本原理,OPDTT与颗粒物化学组成、粒径、来源的关系,OPDTT与健康效应的关系及其局限性和挑战等6个方面,综述基于DTT法的大气颗粒物氧化潜势测定方法研究和应用进展,可为我国大气颗粒物健康效应的研究提供参考。

English Abstract

参考文献 (87)

目录

/

返回文章
返回