钟胜强, 杨扬, 陶然, 李丽, 张敏, 赵建成. 5种植物材料的水解释碳性能及反硝化效率[J]. 环境工程学报, 2014, 8(5): 1817-1824.
引用本文: 钟胜强, 杨扬, 陶然, 李丽, 张敏, 赵建成. 5种植物材料的水解释碳性能及反硝化效率[J]. 环境工程学报, 2014, 8(5): 1817-1824.
Zhong Shengqiang, Yang Yang, Tao Ran, Li Li, Zhang Min, Zhao Jiancheng. Carbon releasing characteristics and denitrification effects of five plant materials[J]. Chinese Journal of Environmental Engineering, 2014, 8(5): 1817-1824.
Citation: Zhong Shengqiang, Yang Yang, Tao Ran, Li Li, Zhang Min, Zhao Jiancheng. Carbon releasing characteristics and denitrification effects of five plant materials[J]. Chinese Journal of Environmental Engineering, 2014, 8(5): 1817-1824.


  • 基金项目:



  • 中图分类号: X703.1

Carbon releasing characteristics and denitrification effects of five plant materials

  • 摘要: 碳源在硝酸盐去除过程中起电子供体的作用,是生物反硝化反应的关键物质之一。为解决污水处理脱氮时碳源不足抑制反硝化反应造成脱氮效率低的问题,本研究选取风车草、甘蔗渣、芦竹、美人蕉和稻草秆5种植物材料作为反硝化碳源,探讨不同植物材料的水解释碳能力和释放规律;并进一步以其水解液作为外加碳源,探讨其对反硝化脱氮效率的影响。研究结果表明,植物材料水解释碳过程符合二级动力学反应规律,不同植物材料的释碳能力具有显著性差异,以甘蔗渣在固液比1:80时COD释放当量最大,为45.45 mg/L;添加植物水解液可显著提高反硝化脱氮效率,以芦竹水解液脱氮效果最好,达到71.9%。此外,碳氮比是影响脱氮效率的重要因素之一,以碳氮比为9时反硝化脱氮效果最佳。
  • 加载中
  • [1] 王丽丽, 赵林, 谭欣, 等. 不同碳源及其碳氮比对反硝化过程的影响. 环境保护科学, 2004, 30(1):15-18 Wang L. L., Zhao L., Tan X., et al. Influence of different carbon source and ratio of carbon and nitrogen for water denitrification. Environmental Protection Science, 2004, 30(1):15-18(in Chinese)
    [2] Lin Y. F., Jing S. R., Wang T. W., et al. Effects of macro-phytes and external carbon sources on nitrate removal from groundwater in constructed wetlands. Environmental Pollution, 2002, 119(3):413-420
    [3] Gersberg R. M., Elkins B. V., Goldman C. R. Nitrogen removal in artificial wetlands. Water Research, 1983, 17(9): 1009-1014
    [4] Lu S. L., Hu H. Y., Sun Y. X., et al. Effect of carbon source on the denitrification in constructed wetlands. Journal of Environmental Sciences, 2009, 21(8):1036-1043
    [5] Davidsson T. E., Stahl M. The influence of organic carbon on nitrogen transformations in five wetland soils. Soil Science Society of America Journal, 2000, 64(3):1129-1136
    [6] Huett D. O., Morris S.G., Smith G., et al. Nitrogen and phosphorus rem oval from plant nursery runoff in vegetated and unvegetated subsurface flow wetlands. Water Research, 2005, 39 (14):3259-3272
    [7] Gibert O., Pomierny S., Rowe I., et al. Selection of organic substrates as potential reactive materials for use in a denitrification permeable reactive barrier(PRB). Bioresou rce Technology, 2008, 99(16):7585-7596
    [8] 姜应和, 李超. 树皮填料补充碳源人工湿地脱氮初步试验研究. 环境科学, 2011, 32(1):158-164 Jiang Y. H., Li C. Preliminary study on denitrification capacity of constructed wetlands filled by bark. Environmental Science, 2011, 32(1):158-164(in Chinese)
    [9] 魏星, 朱伟, 赵联芳, 等. 植物秸秆作补充碳源对人工湿地脱氮效果的影响. 湖泊科学, 2010, 22(6):916-922 Wei X., Zhu W., Zhao L. F., et al. Effect of the carbon source of plant straw supplement in constructed artificial wetland on nitrogen removal. Lake Sciences, 2010, 22(6): 916-922(in Chinese)
    [10] Park J.B.K., Craggs R. J., Sukias J.P.S. Treatment of hydro-ponic wastewater by denitrification filters using plant prunings as the organic carbon source. Bioresource Technology, 2008, 99(8):2711-2716
    [11] 丁怡, 宋新山, 严登华, 等. 补充碳源提取液对人工湿地脱氮作用的影响. 环境科学学报, 2012, 32(7):1646-1652 Ding Y., Song X. S., Yan D. H., et al. Effect of adding carbon source extracts on nitrogen removal in constructed wetland. Acta Scientiae Circumstantiae, 2012, 32(7):1646-1652(in Chinese)
    [12] 梅翔, 占晶, 沙昊, 等. 以红薯浸泡液为碳源的生物反硝化. 环境工程学报, 2010, 4(5):1032-1036 Mei X., Zhan J., Sha H., et al. Biodenitrification with sweet potato lixivium as carbon source. Chinese Journal of Environmental Engineering, 2010, 4(5):1032-1036(in Chinese)
    [13] Hume N. P., Flemming M. S., Home A. J. Denitrification potential and carbon quality of four aquatic plants in wetland microcosms. Soil Science Society of America Journal, 2002, 66(5):1706-1712
    [14] Xia S.Q., Li J.Y., Wang R.C. Nitrogen removal performance and microbial community structure dynamics response to carbon nitrogen ratio in a compact suspended carrier biofilm reactor. Ecological Engineering, 2008, 32(3):256-262
    [15] Zhao Y.J., Liu B., Zhang W.G., et al. Performance of pilot-scale vertical-flow constructed wetlands in responding to variation in influent C/N ratios of simulated urban sewage. Bioresource Technology, 2010, 101(6):1693-1700
    [16] 国家环境保护总局. 水和废水监测分析方法(第4版). 北京:中国环境科学出版社, 2003
    [17] Wieβ-ner A., Kappelmeyer U.K., Kuschk P., et al. Influence of the redox condition dynamics on the removal efficiency of a labora tory-scale constructed wetland. Water Research, 2005, 39(1): 248-256
    [18] Kendall M., Parsons L. L., Murray R.E., et al. Dynamics of soil denitrifier populations:Relationships between enzyme activity, most-probable-number counts, and actual N gas loss. Applied and Environmental Microbiology, 1988, 54 (11): 2711-2716
    [19] 邵留, 徐祖信, 王晟, 等. 新型反硝化固体碳源释碳性能研究. 环境科学, 2011, 32(8):2323-2327 Shao L., Xu Z. X., Wang M., et al. Performance of new solid carbon source materials for denitrification. Environmental Science, 2011, 32(8):2323-2327(in Chinese)
    [20] 耿安朝, 张洪林. 编著. 废水生物处理发展与实践. 沈阳:东北大学出版社, 1997
    [21] Yang X. P., Wang S. M., Zhou L.Y. Effect of carbon source, C/N ratio, nitrate and dissolved oxygen concentration on nitrite and ammonium production from denitrification process by Pseudomonas stutzeri D6. Bioresource Technology, 2012, 104:65-72
    [22] Aslan S., Türkman A. Biological denitrification of drinking water using various natural organic solid substrates. Water Science & Technology, 2003, 48(11):489-495
    [23] 傅利剑, 郭丹钊, 史春龙, 等. 碳源及碳氮比对异养反硝化微生物异养反硝化作用的影响. 农村生态环境, 2005, 21(2):42-45 Fu L. J., Guo D. Z., Shi C. L., et al. Effect of carbon source and C/N ratio on heterotrophic denitrification of pure culture. Rural Eco-Environment, 2005, 21(2):42-45(in Chinese)
    [24] 金春姬, 佘宗莲, 高京淑, 等. 低C/N比污水生物脱氮所需外加碳源量的确定. 环境科学研究, 2003, 16(5):37-40 Jin C. J., She Z. L., Gao J. S., et al. Determination of demand of external carbon source for biological nitrogen removal of wastewater with low C/N ratio. Research of Environmental Sciences, 2003, 16(5):37-40(in Chinese)
    [25] Nyberg U., Aspegren H., Andersson B., et al. Full scale application of nitrogen removal with methanol as carbon source. Water Science and Technology, 1992, 26(5/6): 1077-1086
    [26] Argaman Y. Energetics of single-sludge nitrogen remo-val. Water Research, 1985, 19(2):1505-1513
    [27] 廖晓数, 贺锋, 吴振斌, 等. 低C/N对湿地中硝化反硝化作用的影响. 中国环境科学, 2008, 28(7):603-607 Liao X. S., He F., Wu Z. B., et al. Influence of low C/N on nitrification and denitrification in wetlands. China Environmental Science, 2008, 28(7):603-607(in Chinese)
    [28] 陈庆昌, 冯爱坤, 罗建中, 等. 人工湿地脱氮技术研究. 工业安全与环保, 2008, 34(7):17-19 Chen Q. C., Feng A. K., Luo J. Z., et al. Study on the denitriding techniques for constructed wetlands. Industrial Safety and Environmental Protection, 2008, 34(7):17-19(in Chinese)
    [29] 赵联芳, 朱伟, 赵建. 人工湿地处理低碳氮比污染河水时的脱氮机理. 环境科学学报, 2006, 26(11):1821-1827 Zhao L. F., Zhu W., Zhao J. Nitrogen removal mechanism in constructed wetland used for treating polluted river water with lower ratio of carbon to nitrogen. Acta Scientiae Circumstantiae, 2006, 26 (11):1821-1827(in Chinese)
    [30] Rittmann B. E., McCarty P. L. Environmental Biotechnology:Principles and Applications. New York: McGraw-Hill Book Co., 2001
    [31] Xie L., Chen J. R., Wang R., et al. Effect of carbon source and COD/NO3--N ratio on anaerobic simultaneous denitrifica-tion and methanogenesis for high-strength wastewater treatment. Journal of Bioscience and Bioengineering, 2012, 113(6): 759-764
    [32] Wallenstein M. D., Myrold D. D., Firestone M., et al. Environmental controls an denitrifying communities and denitrification rates: Insights from molecular methods. Ecological Applications, 2006, 16(6):2143-2152
    [33] Wong B.T., Lee D.J. Denitrifying sulfide removal and car-bon methanogenesis in a mesophilic, methanogenic culture. Bioresource Technology, 2011, 102(12):6673-6679
    [34] Zhao Y. J., Zhang H., Xu C., et al. Efficiency of two-stage combinations of subsurface vertical down-flow and up-flow constructed wetland systems for treating variation in influent C/N ratios of domestic waste water. Ecological Engineering, 2011, 37(10):1546-1554
    [35] 周丹丹, 马放, 董双石, 等. 溶解氧和有机碳源对同步硝化反硝化的影响. 环境工程学报, 2007, 1(4):25-28 Zhou D. D., Ma F., Dong S. S., et al. Influences of DO and organic carbon on simultaneous nitrification and denitrification. Chinese Journal of Environmental Engineering, 2007, 1(4):25-28(in Chinese)
    [36] Chiu Y. C., Chung M. S. Determination of optimal COD/ nitrate ratio for biological denitrification. International Biodeterioration & Biodegradation, 2003, 51(1):43-49
  • 加载中
  • 文章访问数:  1084
  • HTML全文浏览数:  384
  • PDF下载数:  841
  • 施引文献:  0
  • 收稿日期:  2014-02-21
  • 刊出日期:  2014-05-06


  • 1.  暨南大学水生生物研究中心, 广州 510632
  • 2.  热带亚热带水生态工程教育部工程研究中心, 广州 510632
基金项目:  “十二五”国家科技支撑计划项目(2012BAJ21B07) 国家自然科学基金资助项目(41201506)

摘要: 碳源在硝酸盐去除过程中起电子供体的作用,是生物反硝化反应的关键物质之一。为解决污水处理脱氮时碳源不足抑制反硝化反应造成脱氮效率低的问题,本研究选取风车草、甘蔗渣、芦竹、美人蕉和稻草秆5种植物材料作为反硝化碳源,探讨不同植物材料的水解释碳能力和释放规律;并进一步以其水解液作为外加碳源,探讨其对反硝化脱氮效率的影响。研究结果表明,植物材料水解释碳过程符合二级动力学反应规律,不同植物材料的释碳能力具有显著性差异,以甘蔗渣在固液比1:80时COD释放当量最大,为45.45 mg/L;添加植物水解液可显著提高反硝化脱氮效率,以芦竹水解液脱氮效果最好,达到71.9%。此外,碳氮比是影响脱氮效率的重要因素之一,以碳氮比为9时反硝化脱氮效果最佳。

English Abstract

参考文献 (36)