[1] AGRAWAL A, SAHU K K. An overview of the recovery of acid from spent acidic solutions from steel and electroplating industries[J]. Journal of Hazardous Materials, 2009, 171(13): 61-75.
[2] MACHADO M D, SOARES E V, SOARES H M V M. Selective recovery of chromium, copper, nickel, and zinc from an acid solution using an environmentally friendly process[J]. Environmental Science & Pollution Research, 2011, 18(8): 1279-1285.
[3] 吴阳东, 王永成, 韩福勇. PCB酸蚀刻废液制备氧化铜及后续废水处理条件研究[J]. 广东科技, 2013, 22(12): 184-186. doi: 10.3969/j.issn.1006-5423.2013.12.114
[4] 余辉, 孙聪聪, 焦少俊, 等. 废酸的综合治理与资源化研究进展[J]. 环境监测管理与技术, 2018, 30(2): 5-10. doi: 10.3969/j.issn.1006-2009.2018.02.002
[5] 聂西度, 谢华林. ICP-OES法测定印染废水中多种金属元素[J]. 工业水处理, 2012, 32(5): 84-86. doi: 10.3969/j.issn.1005-829X.2012.05.024
[6] 周丽, 马艾丽, 李大伟. ICP-OES测定电镀废水中铜、锌、铅、铬、镉、镍[J]. 广东化工, 2016, 43(16): 176-186.
[7] 刘畅. 两种消解体系处理测定废水中镉的比对[J]. 农业与技术, 2016, 36(23): 5-7.
[8] 陈宗保, 蔡恩钦, 刘林海. 石墨炉原子吸收法测定废水中多种痕量金属[J]. 上饶师范学院学报, 2009, 6(1): 69-71. doi: 10.3969/j.issn.1004-2237.2009.01.015
[9] 董正臻, 王宏, 蒯春利. 火焰原子吸收光谱法测定废水中重金属的质量控制[J]. 光谱实验室, 2011, 28(5): 354-356.
[10] 岳太星, 李晓晶, 李红莉, 等. 微波消解-电感耦合等离子体质谱法同时测定废水中20种元素[J]. 环境监测管理与技术, 2012, 24(4): 44-47. doi: 10.3969/j.issn.1006-2009.2012.04.011
[11] 中华人民共和国生态环境保护部, 中国国家科技标准司. 水质 金属总量的消解 微波消解法: HJ 678-2013[S]. 北京: 中国环境科学出版社, 2013.
[12] 宋超, 张亚维, 高勋. 基于激光诱导击穿光谱技术的混合溶液重金属元素检测[J]. 光谱学与光谱分析, 2017, 37(6): 1885-1889.
[13] 李倩雨. 水体重金属元素的激光诱导击穿光谱高灵敏度检测新方法研究[D]. 重庆: 重庆邮电大学, 2019.
[14] YANG X Y, HAO Z Q, LI C M, et al. Sensitive determinations of Cu, Pb, Cd, and Cr elements in aqueous solutions using chemical replacement combined with surface-enhanced laser-induced breakdown spectroscopy[J]. Optics Express, 2016, 24(12): 13410. doi: 10.1364/OE.24.013410
[15] WANG X, WEI Y, LIN Q, et al. Simple, fast matrix conversion and membrane separation method for ultrasensitive metal detection in aqueous samples by laser-induced breakdown spectroscopy[J]. Analytical Chemistry, 2015, 87(11): 5577-5583. doi: 10.1021/acs.analchem.5b00253
[16] LIN Q Y, WEI Z M, GUO H L, et al. Highly concentrated, ring-shaped phase conversion laser-induced breakdown spectroscopy technology for liquid sample analysis[J]. Applied Optics, 2017, 56(17): 5092-5098. doi: 10.1364/AO.56.005092
[17] 王彦杰. 氢键增强水凝胶的制备与研究[D]. 天津: 天津工业大学, 2018.
[18] DE GIACOMO A, KORAL C, VALENZA G, et al. Nanoparticle enhanced laser induced breakdown spectroscopy for microdrop analysis at sub-ppm level[J]. Analytical Chemistry, 2016, 88(10): 5251-5257. doi: 10.1021/acs.analchem.6b00324
[19] DE GIACOMO A, GAUDIUSO R, KORAL C, et al. Nanoparticle-enhanced laser-induced breakdown spectroscopy of metallic samples[J]. Analytical Chemistry, 2013, 85(21): 10180-10187. doi: 10.1021/ac4016165
[20] WANG Y J, ZHANG X N, SONG Y, et al. Ultrastiff and tough supramolecular hydrogels with a dense and robust hydrogen bond network[J]. Chemistry of Materials, 2019, 31(4): 1430-1440. doi: 10.1021/acs.chemmater.8b05262
[21] GONG J P, KATSUYAMAY, KUROKAWA T, et al. Double-network hydrogels with extremely high mechanical strength[J]. 2003, 15(14): 1155-1158.