铁电絮凝产羟自由基氧化降解地下水中磺胺

张严, 魏桃员, 符文晶, 谢世伟. 铁电絮凝产羟自由基氧化降解地下水中磺胺[J]. 环境工程学报, 2019, 13(4): 871-877. doi: 10.12030/j.cjee.201809139
引用本文: 张严, 魏桃员, 符文晶, 谢世伟. 铁电絮凝产羟自由基氧化降解地下水中磺胺[J]. 环境工程学报, 2019, 13(4): 871-877. doi: 10.12030/j.cjee.201809139
ZHANG Yan, WEI Taoyuan, FU Wenjing, XIE Shiwei. Hydroxyl radical induced by iron electrocoagulation for oxidative degradation of sulfonamide in groundwater[J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 871-877. doi: 10.12030/j.cjee.201809139
Citation: ZHANG Yan, WEI Taoyuan, FU Wenjing, XIE Shiwei. Hydroxyl radical induced by iron electrocoagulation for oxidative degradation of sulfonamide in groundwater[J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 871-877. doi: 10.12030/j.cjee.201809139

铁电絮凝产羟自由基氧化降解地下水中磺胺

  • 基金项目:

    国家自然科学基金资助项目51808415

    武汉科技大学青年科技骨干培养计划项目2017xz023国家自然科学基金资助项目(51808415)

    武汉科技大学青年科技骨干培养计划项目(2017xz023)

Hydroxyl radical induced by iron electrocoagulation for oxidative degradation of sulfonamide in groundwater

  • Fund Project:
  • 摘要: 为了揭示铁电絮凝(EC)过程中尚未被认识的羟自由基氧化机制,以磺胺污染的地下水为对象进行电絮凝降解研究。通过淬灭自由基、厌氧电絮凝和加Fe(III)盐等对照实验,探究反应体系是否存在羟自由基氧化机制;并对不同电解质、溶液pH、初始磺胺浓度、电流强度条件下的电絮凝降解磺胺效率进行了测定。研究结果表明:铁电絮凝处理磺胺废水反应体系存在羟自由基氧化降解磺胺机制;地下水中,阴离子对铁电絮凝氧化效果的影响较小。对模拟江汉平原含0.2 mg·L-1 As(III)和0.1 mg·L-1磺胺的地下水进行铁电絮凝处理,在30 mA的电流条件下,As(III)在4 h内的去除率达到100%,而磺胺达到68.6%。
  • 加载中
  • [1] 吴爱民, 荆继红, 宋博. 略论中国水安全问题与地下水的保障作用[J]. 地质学报, 2016, 90(10): 2939-2947.
    [2] 中国人民共和国水利部. 中国水资源公报[M]. 北京: 中国水利水电出版社, 2016.
    [3] TONG L, HUANG S, WANG Y, et al. Occurrence of antibiotics in the aquatic environment of Jianghan Plain, central China[J]. Science of the Total Environment, 2014, 497: 180-187.
    [4] JONES O A, LESTER J N, VOULVOULIS N. Pharmaceuticals: A threat to drinking water? [J]. Trends in Biotechnology, 2005, 23(4): 163-167.
    [5] BOXALL A B A, BLACKWELL P, CAVALLO R, et al. The sorption and transport of a sulphonamide antibiotic in soil systems[J]. Toxicology Letters, 2002, 131: 19-28.
    [6] 张从良, 王岩, 王福安. 磺胺类药物在土壤中的微生物降解[J]. 农业环境科学学报, 2007, 26(5): 1658-1662.
    [7] HUBER M M, CANONICA S, PARK G Y, et al. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes[J]. Environmental Science & Technology, 2003, 37: 1016-1024.
    [8] RADJENOVIC J, PETROVIC M, VENTURA F, et al. Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment[J]. Water Research, 2008 , 42(14): 3601-3610.
    [9] SHARMA V K. Oxidantive transformations of envioronmental pharmaceuticas by Cl2, ClO2, O3, and Fe(IV): Kinetics assessment [J]. Chemosphere, 2008, 73(9): 1379-1386.
    [10] BRITTO J M, RANGEL M C. Advanced oxidation orocess of phenolic compounds in industrial wasterwater[J]. Quim Nova, 2008, 31: 114-122.
    [11] AMROSE S, GADGIL A, SRINIVASAN V, et al. Arsenic removal from groundwater using iron electrocoagulation: Effect of charge dosage rate[J]. Journal of Environmental Science and Health, 2013, 48(9): 1019-1030.
    [12] LI L, GENUCHTEN C M VAN, ADDY S E, et al. Modeling As(III) oxidation and removal with iron electrocoagulation in groundwater[J]. Environmental Science & Technology, 2012, 46(21): 12038-12045.
    [13] XIE S, YUAN S, LIAO P, et al. Iron-anode enhanced sand filter for arsenic removal from tube well water[J]. Environmental Science & Technology, 2017, 51(2): 889-896.
    [14] TONG M, YUAN S, ZHANG P, et al. Electrochemically induced oxidative precipitation of Fe (II) for As (III) oxidation and removal in synthetic groundwater[J]. Environmental Science & Technology, 2014, 48(9): 5145-5153.
    [15] BATAINEH H, PESTOVSKY O, BAKAC A. pH-induced mechanistic changeover from hydroxyl radicals to iron (IV) in the Fenton reaction[J]. Chemical Science, 2012, 3(5): 1594-1599.
    [16] KEENAN C R, SEDLAK D L. Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen[J]. Environmental Science & Technology, 2008, 42(4): 1262-1267.
    [17] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/?O) in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886.
    [18] PHAM A N, WAITE T D. Oxygenation of Fe (II) in natural waters revisited: Kinetic modeling approaches, rate constant estimation and the importance of various reaction pathways[J]. Geochimicaet Cosmochimica Acta, 2008, 72(15): 3616-3630.
    [19] LAKSHMANAN D, CLIFFORD D A, SAMANTA G. Ferrous and ferric ion generation during iron electrocoagulation[J]. Environmental Science & Technology, 2009, 43(10): 3853-3859.
    [20] HUG S J, LEUPIN O. Iron-catalyzed oxidation of arsenic (III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction[J]. Environmental Science & Technology, 2003, 37(12): 2734-2742.
    [21] BOCOS E, BRILLAS E, SANROMA?N M A, et al. Electrocoagulation: Simply a phase separation technology? The case of bronopol compared to its treatment by EAOPs[J]. Environmental Science & Technology, 2016, 50(14): 7679-7686.
    [22] BUXTON G V, ELLIOT A J. Rate constant for reaction of hydroxyl radicals with bicarbonate ions[J]. Radiation Physics & Chemistry, 1986, 27(3): 241-243.
    [23] CHEN S N, HOFFMAN M Z, PARSONS G H. Reactivity of the carbonate radical toward aromatic compounds in aqueous solution[J]. Journal of Physical Chemistry, 1975, 79(18): 1911-1912.
    [24] BIANCO B, DEMICHELIS I. Fenton treatment of complex industrial wastewater: Optimization of process conditions by surface response method[J]. Journal of Hazardous Materials, 2011, 186(2/3): 1733-1738.
  • 加载中
计量
  • 文章访问数:  2582
  • HTML全文浏览数:  2415
  • PDF下载数:  201
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-04-15

铁电絮凝产羟自由基氧化降解地下水中磺胺

  • 1. 武汉科技大学城市建设学院,武汉 430065
基金项目:

国家自然科学基金资助项目51808415

武汉科技大学青年科技骨干培养计划项目2017xz023国家自然科学基金资助项目(51808415)

武汉科技大学青年科技骨干培养计划项目(2017xz023)

摘要: 为了揭示铁电絮凝(EC)过程中尚未被认识的羟自由基氧化机制,以磺胺污染的地下水为对象进行电絮凝降解研究。通过淬灭自由基、厌氧电絮凝和加Fe(III)盐等对照实验,探究反应体系是否存在羟自由基氧化机制;并对不同电解质、溶液pH、初始磺胺浓度、电流强度条件下的电絮凝降解磺胺效率进行了测定。研究结果表明:铁电絮凝处理磺胺废水反应体系存在羟自由基氧化降解磺胺机制;地下水中,阴离子对铁电絮凝氧化效果的影响较小。对模拟江汉平原含0.2 mg·L-1 As(III)和0.1 mg·L-1磺胺的地下水进行铁电絮凝处理,在30 mA的电流条件下,As(III)在4 h内的去除率达到100%,而磺胺达到68.6%。

English Abstract

参考文献 (24)

目录

/

返回文章
返回